View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agroindustrial Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agroindustrial Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Prediksi Permintaan Lapis Bogor ABC Menggunakan Algoritma XGBoost dan Random Forest di PT XYZ

      Thumbnail
      View/Open
      Cover (3.929Mb)
      Fulltext (3.048Mb)
      Lampiran (1.788Mb)
      Date
      2025
      Author
      HIKMAH, NUR
      Hardjomidjojo, Hartrisari
      Marimin
      Metadata
      Show full item record
      Abstract
      Peramalan permintaan produk Lapis Bogor ABC dengan umur simpan pendek di PT XYZ menghadapi tantangan akurasi, menyebabkan masalah operasional seperti overstock dan stockout akibat ketidakmampuan metode konvensional dalam memodelkan pola permintaan yang fluktuatif. Penelitian ini bertujuan mengembangkan dan membandingkan model prediksi berbasis machine learning untuk meningkatkan akurasi peramalan pada dua varian produk Lapis Bogor ABC. Menggunakan algoritma Random Forest dan XGBoost, penelitian ini menganalisis data historis melalui rekayasa fitur dan optimisasi hyperparameter. Hasil analisis menunjukkan bahwa faktor musiman terkait hari raya besar, khususnya Lebaran, merupakan prediktor permintaan paling dominan. Evaluasi komparatif menemukan tidak ada satu model pun yang unggul secara universal, model XGBoost mencapai akurasi tertinggi untuk varian original keju yaitu sebesar 88,13%, sementara Random Forest lebih superior untuk varian brownies keju sebesar 90,16%. Hal ini secara konklusif memvalidasi bahwa pendekatan peramalan one-size-fits-all tidak efektif. Pemilihan model prediktif yang disesuaikan secara spesifik dengan karakteristik unik setiap produk menjadi krusial untuk optimisasi dan pengambilan keputusan yang lebih akurat.
       
      Demand forecasting for short shelf life Lapis Bogor ABC products at PT XYZ faces accuracy challenges, leading to operational issues such as overstock and stockouts due to the inability of conventional methods to model fluctuating demand patterns. This study aims to develop and compare machine learning based predictive models to improve forecasting accuracy for two variants of the Lapis Bogor ABC product. Using the Random Forest and XGBoost algorithms, the study analyzes historical data through feature engineering and hyperparameter optimization. The analysis reveals that seasonal factors related to major holidays, particularly Lebaran, are the most dominant demand predictors. Comparative evaluation shows that no single model universally outperforms the other. XGBoost achieved the highest accuracy for the original cheese variant at 88.13%, while Random Forest performed better for the cheese brownies variant at 90.16%. These findings conclusively validate that a one size fits all forecasting approach is ineffective. Selecting predictive models specifically tailored to the unique characteristics of each product is crucial for optimization and more accurate decision making.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168604
      Collections
      • UT - Agroindustrial Technology [4355]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository