View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Economics and Management
      • UT - Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Economics and Management
      • UT - Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritma K-Means dengan Metode Elbow untuk Pengelompokan Saham Emiten Industri Produk Pertanian

      Thumbnail
      View/Open
      Cover (332.9Kb)
      Fulltext (1.612Mb)
      Lampiran (2.440Mb)
      Date
      2024
      Author
      Febrian, Sandi Surya
      Mutasowifin, Ali
      Metadata
      Show full item record
      Abstract
      Konsentrasi portofolio adalah upaya investasi pada aset yang memiliki ciri tertentu di sektor yang sama. Saham emiten industri produk pertanian dapat dijadikan pilihan dalam pembentukan konsentrasi portofolio karena memiliki pertumbuhan dan kinerja yang baik. Penelitian ini bertujuan untuk mengelompokkan saham emiten industri produk pertanian menggunakan algoritma K-Means clustering dengan metode Elbow menggunakan alat analisis Python 3.10 untuk menentukan cluster yang berisi kumpulan saham dengan kinerja keuangan terbaik. Penelitian menghasilkan jumlah cluster optimal sebanyak 3, yaitu cluster nomor 0, 1, dan 2. Cluster yang berisikan kumpulan saham dengan kinerja keuangan terbaik adalah cluster nomor 2 yang diisi oleh emiten Bisi International Tbk. (BISI), PP London Sumatra Indonesia Tbk. (LSIP), dan Putra Utama Makmur Tbk. (DPUM). Cluster nomor 1 memiliki beberapa emiten dengan kinerja keuangan yang cukup baik karena berbatasan dengan cluster nomor 2, yaitu emiten Astra Agro Lestari Tbk. (AALI), Sumber Tani Agung Resources Tbk. (STAA), dan Charoen Pokphand Indonesia Tbk. (CPIN).
       
      Portfolio concentration was an investment effort in assets that had certain characteristics in the same sector. Agricultural product industry issuer stocks could be used as an option in the formation of portfolio concentration because they had good growth and performance. This research aimed to group agricultural product industry issuer stocks using the K-Means clustering algorithm with the Elbow method using the Python 3.10 analysis tool to determine clusters that contained a collection of stocks with the best financial performance. The research resulted in an optimal number of clusters of 3, namely cluster numbers 0, 1, and 2. The cluster that contained a collection of stocks with the best financial performance was cluster number 2, which was filled by issuers Bisi International Tbk. (BISI), PP London Sumatra Indonesia Tbk. (LSIP), and Putra Utama Makmur Tbk. (DPUM). Cluster number 1 had several issuers with fairly good financial performance because it was adjacent to cluster number 2, namely the issuers Astra Agro Lestari Tbk (AALI), Sumber Tani Agung Resources Tbk (STAA), and Charoen Pokphand Indonesia Tbk (CPIN).
       
      URI
      http://repository.ipb.ac.id/handle/123456789/158558
      Collections
      • UT - Management [3628]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository