Evaluasi Metode Enkapsulasi terhadap Karakteristik Fisikokimia, Viabilitas, dan Uji In Vitro Sinbiotik Bifidobacterium bifidum FNCC 0491 dan Inulin
Date
2025Author
Ummah, Annisa' Fadhilatul
Wijayanti, Indah
Rahayuningsih, Mulyorini
Ridwan, Roni
Metadata
Show full item recordAbstract
Sinbiotik yaitu kombinasi probiotik dan prebiotik yang berperan penting
dalam meningkatkan kesehatan pencernaan ruminansia, namun viabilitas bakteri
sering kali menurun selama proses pengolahan. Penelitian ini bertujuan
mengevaluasi efektivitas tiga metode enkapsulasi, yaitu spray drying (P1), freeze
drying (P2), dan cell immobilization (P3), dalam mempertahankan viabilitas serta
kualitas fisik produk sinbiotik yang terdiri atas Bifidobacterium bifidum sebagai
probiotik dan inulin sebagai prebiotik. Setiap metode dikombinasikan dengan jenis
matriks yang berbeda: maltodekstrin (M1), alginat (M2), dan xanthan gum (M3).
Parameter yang diamati meliputi scanning electron microscopy (SEM), fourier
transform infrared spectroscopy (FTIR), warna, aroma, tekstur, kecernaan dan
degradasi bahan kering serta bahan organik (DBK. DBO, KcBK, KcBO) melalui
simulasi saluran pencernaan rumen secara in vitro, serta viabilitas bakteri. Hasil
penelitian menunjukkan bahwa metode enkapsulasi dan bahan penyalut
memberikan pengaruh yang signifikan terhadap seluruh parameter. Hasil terbaik
pada perlakuan P3M2 terutama disebabkan oleh jaringan gel pelindung yang
dibentuk oleh alginat, yang meningkatkan integritas mikrokapsul dan
mempertahankan viabilitas bakteri setelah proses enkapsulasi, yang kembali
tumbuh setelah 24 jam. Pada proses cell immobilization, alginat bereaksi dengan
kalsium klorida (CaCl2) membentuk matriks gel kalsium–alginat yang stabil tanpa
paparan suhu tinggi, sehingga mengurangi kerusakan termal pada sel bakteri.
Analisis SEM dan FTIR mengonfirmasi bahwa alginat menghasilkan mikrokapsul
yang padat dan stabil dengan interaksi molekuler yang kuat, sehingga
memungkinkan P3M2 mempertahankan viabilitas bakteri tertinggi di antara semua
perlakuan. Temuan ini menegaskan bahwa metode enkapsulasi cell immobilization
dengan matriks alginat mampu menghasilkan mikrokapsul dengan struktur gel yang
stabil, mempertahankan viabilitas bakteri tertinggi, serta menunjukkan ketahanan
yang baik terhadap degradasi dan kecernaan rumen, dengan potensi optimal untuk
penghantaran pasca-rumen. Metode ini merupakan pendekatan yang menjanjikan
untuk pengembangan aditif pakan sinbiotik yang kuat dan berkinerja tinggi. Symbiotics, a combination of probiotics and prebiotics, play an important role
in improving the digestive health of ruminants; however, bacterial viability often
decreases during processing. This study aimed to evaluate the effectiveness of three
encapsulation methods, which are spray drying (P1), freeze drying (P2) and cell
immobilization (P3), in preserving the viability and physical quality of a symbiotic
product consisting of Bifidobacterium bifidum as a probiotic and inulin as a
prebiotic. Each method was combined with different coating materials:
maltodekstrin (M1), alginate (M2), and xanthan gum (M3). The parameters
observed included scanning electron microscopy (SEM), fourier transform infrared
spectroscopy (FTIR), color, aroma, texture, dry matter and organic matter
degradation and digestibility (DMD, OMD, IVDMD, IVOMD) through an in vitro
rumen gastrointestinal simulation, and bacterial viability. The results showed that
the encapsulation method and coating material had significant effects on all
parameters. The best results from the P3M2 treatment were mainly due to the
protective gel network formed by alginate, which improved the integrity of the
microcapsules and maintained bacterial viability after encapsulation, which was
regrown after 24 hours. In the cell immobilization process, alginate reacts with
calcium chloride (CaCl2) to form a stable calcium-alginate gel matrix without
exposure to high temperatures, thereby reducing thermal damage to bacterial cells.
SEM and FTIR analyses confirmed that alginate produces dense and stable
microcapsules with strong molecular interactions, enabling P3M2 to maintain the
highest bacterial viability among all treatments. These findings highlight that the
encapsulation method of cell immobilization with an alginate matrix is capable of
producing microcapsules with a stable gel structure, maintaining the highest
bacterial viability, and showing good resistance to degradation and rumen
digestibility, and optimal potential for post-rumen delivery. This method is a
promising approach for the development of robust, high-efficacy symbiotic feed
additives.
Collections
- MT - Animal Science [1294]
