| dc.contributor.advisor | Aidi, Muhammad Nur | |
| dc.contributor.advisor | Firdawanti, Aulia Rizki | |
| dc.contributor.author | Marjono, Jonathan | |
| dc.date.accessioned | 2025-06-28T14:41:55Z | |
| dc.date.available | 2025-06-28T14:41:55Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/163225 | |
| dc.description.abstract | Perdagangan internasional berperan penting dalam mendorong pertumbuhan ekonomi nasional, termasuk melalui sektor ekspor nonmigas. Namun, fluktuasi nilai ekspor menuntut adanya metode peramalan yang andal untuk mendukung pengambilan keputusan strategis. Penelitian ini bertujuan untuk menerapkan dan membandingkan empat metode peramalan nilai ekspor nonmigas Indonesia, yaitu exponential smoothing, ARIMA, Fuzzy Time Series (FTS) model Saxena Easo, dan random forest. Data yang digunakan berupa data bulanan dari Januari 2012 hingga Desember 2024. Model yang dibangun meliputi Holt’s Double Exponential Smoothing (a = 0,4;ß = 0,1), ARIMA(0,1,1), FTS model Saxena Easo, dan random forest dengan fitur lag 1 dan 2. Perbandingan dilakukan melalui evaluasi kinerja model secara visual menggunakan plot deret waktu dan secara analitik melalui metrik Mean Absolute Percentage Error (MAPE). Hasil menunjukkan bahwa random forest merupakan metode terbaik karena mampu mengikuti pola data secara visual dan menghasilkan nilai MAPE terendah pada data uji, yaitu 5,20%. Holt’s DES dan ARIMA juga menunjukkan kinerja yang baik, sedangkan FTS Saxena Easo menunjukkan gejala overfitting sehingga kurang sesuai dengan karakteristik data ini. Temuan ini memberikan dasar dalam memilih metode peramalan yang tepat dan dapat digunakan sebagai acuan untuk pengembangan lebih lanjut. | |
| dc.description.abstract | International trade plays a crucial role in promoting national economic growth, including through the non-oil and gas export sector. However, fluctuations in export values require reliable forecasting methods to support strategic decision-making. This study aims to apply and compare four forecasting methods for Indonesia’s non-oil and gas export values, namely exponential smoothing, ARIMA, the Fuzzy Time Series (FTS) Saxena Easo model, and random forest. The data used consists of monthly observations from January 2012 to December 2024. The models developed are Holt’s Double Exponential Smoothing (a = 0,4; ß = 0,1), ARIMA(0,1,1), the FTS Saxena Easo model, and random forest using lag 1 and lag 2 features. Model performance was evaluated visually through time series plots and analytically using the Mean Absolute Percentage Error (MAPE) metric. The results indicate that random forest is the best-performing method as it effectively captures data patterns visually and produces the lowest MAPE on the test data, which is 5,20%. Holt’s DES and ARIMA also showed good performance, while the FTS Saxena Easo model exhibited signs of overfitting and was therefore less suitable for the data. These findings provide a basis for selecting suitable forecasting methods and may serve as a reference for further development. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Perbandingan Metode Exponential Smoothing, ARIMA, Fuzzy Time Series, dan Random Forest untuk Peramalan Nilai Ekspor Nonmigas Indonesia | id |
| dc.title.alternative | Comparison of Exponential Smoothing, ARIMA, Fuzzy Time Series, and Random Forest Methods for Forecasting Indonesia’s Non-Oil and Gas Export Value | |
| dc.type | Skripsi | |
| dc.subject.keyword | ARIMA | id |
| dc.subject.keyword | forecasting | id |
| dc.subject.keyword | fuzzy time series | id |
| dc.subject.keyword | random forest | id |
| dc.subject.keyword | non-oil and gas export | id |