View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Metode Exponential Smoothing, ARIMA, Fuzzy Time Series, dan Random Forest untuk Peramalan Nilai Ekspor Nonmigas Indonesia

      Thumbnail
      View/Open
      Cover (2.567Mb)
      Fulltext (3.630Mb)
      Lampiran (2.287Mb)
      Date
      2025
      Author
      Marjono, Jonathan
      Aidi, Muhammad Nur
      Firdawanti, Aulia Rizki
      Metadata
      Show full item record
      Abstract
      Perdagangan internasional berperan penting dalam mendorong pertumbuhan ekonomi nasional, termasuk melalui sektor ekspor nonmigas. Namun, fluktuasi nilai ekspor menuntut adanya metode peramalan yang andal untuk mendukung pengambilan keputusan strategis. Penelitian ini bertujuan untuk menerapkan dan membandingkan empat metode peramalan nilai ekspor nonmigas Indonesia, yaitu exponential smoothing, ARIMA, Fuzzy Time Series (FTS) model Saxena Easo, dan random forest. Data yang digunakan berupa data bulanan dari Januari 2012 hingga Desember 2024. Model yang dibangun meliputi Holt’s Double Exponential Smoothing (a = 0,4;ß = 0,1), ARIMA(0,1,1), FTS model Saxena Easo, dan random forest dengan fitur lag 1 dan 2. Perbandingan dilakukan melalui evaluasi kinerja model secara visual menggunakan plot deret waktu dan secara analitik melalui metrik Mean Absolute Percentage Error (MAPE). Hasil menunjukkan bahwa random forest merupakan metode terbaik karena mampu mengikuti pola data secara visual dan menghasilkan nilai MAPE terendah pada data uji, yaitu 5,20%. Holt’s DES dan ARIMA juga menunjukkan kinerja yang baik, sedangkan FTS Saxena Easo menunjukkan gejala overfitting sehingga kurang sesuai dengan karakteristik data ini. Temuan ini memberikan dasar dalam memilih metode peramalan yang tepat dan dapat digunakan sebagai acuan untuk pengembangan lebih lanjut.
       
      International trade plays a crucial role in promoting national economic growth, including through the non-oil and gas export sector. However, fluctuations in export values require reliable forecasting methods to support strategic decision-making. This study aims to apply and compare four forecasting methods for Indonesia’s non-oil and gas export values, namely exponential smoothing, ARIMA, the Fuzzy Time Series (FTS) Saxena Easo model, and random forest. The data used consists of monthly observations from January 2012 to December 2024. The models developed are Holt’s Double Exponential Smoothing (a = 0,4; ß = 0,1), ARIMA(0,1,1), the FTS Saxena Easo model, and random forest using lag 1 and lag 2 features. Model performance was evaluated visually through time series plots and analytically using the Mean Absolute Percentage Error (MAPE) metric. The results indicate that random forest is the best-performing method as it effectively captures data patterns visually and produces the lowest MAPE on the test data, which is 5,20%. Holt’s DES and ARIMA also showed good performance, while the FTS Saxena Easo model exhibited signs of overfitting and was therefore less suitable for the data. These findings provide a basis for selecting suitable forecasting methods and may serve as a reference for further development.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/163225
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository