View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Deep Learning YOLO untuk Deteksi Keberhasilan Tanam Padi (Oryza sativa) berbasis Citra Unmanned Aerial Vehicle

      Thumbnail
      View/Open
      Cover (679.5Kb)
      Fullteks (1.294Mb)
      Lampiran (1.127Mb)
      Date
      2022
      Author
      Purwansya, Yuvicko Gerhaen
      Supriyanto
      Metadata
      Show full item record
      Abstract
      Deteksi keberhasilan tanam padi (Oryza sativa) pada fase awal budidaya perlu dilakukan secara ketat agar dapat dimanfaatkan untuk kegiatan penyulaman, pengendalian hama, pengendalian penyakit, prediksi kebutuhan pupuk, dan perlakuan pemeliharaan tanaman yang tepat. Citra tangkapan dari Unmanned Aerial Vehicle (UAV) sangat potensial digunakan untuk mengamati lahan padi yang luas dengan bantuan algoritma kecerdasan buatan. Penelitian ini bertujuan mengembangkan model deep learning untuk mendeteksi tegakan padi di sawah pada fase awal budidaya menggunakan citra RGB beresolusi tinggi hasil tangkapan UAV. Penelitian ini menggunakan deep learning dengan algoritma YOLOv5 yang terdiri dari tahapan: (1) pengumpulan dataset, (2) pelabelan dataset, (3) training dataset, (4) uji model hasil training, dan (5) implementasi model. Training deep learning terhadap 9.677 dataset dilakukan dengan menggunakan algoritma YOLOv5s, YOLOv5m, dan YOLOv5l. Akurasi dari model deep learning menggunakan algoritma YOLOv5s, YOLOv5m, dan YOLOv5l masing-masing sebesar 89,35%; 91,29%; dan 79,43%. Nilai presisi yang didapatkan sebesar 99,90%; 99,80%; dan 99,89%. Sedangkan nilai recall yang didapatkan sebesar 89,43%; 91,46%; dan 79,50%. Hasil tersebut menunjukkan model deep learning yang telah dikembangkan mampu mendeteksi tegakan padi dengan akurasi tinggi dan presisi. Model dapat digunakan untuk mendeteksi padi pada fase awal budidaya dengan user interface berbasis web yang diimplementasikan dengan bahasa pemrograman Pyhton pada komputer lokal.
       
      Detection the success of rice (Oryza sativa) planting in the early stages of cultivation are important for embroidery activities, pest control, disease control, prediction of fertilizer needs, and proper plant maintenance treatment. The captured image from the Unmanned Aerial Vehicle (UAV) coupled with artificial intelligence are potential to observe large scale of rice fields. The objective of this study is to develop a deep learning model to detect rice stands using high resolution RGB imagery captured by UAV in the early stages of paddy. Deep learning with the YOLOv5 algorithm was used to develop the model that consists of the following stages: (1) dataset collection, (2) dataset labeling, (3) dataset training, (4) model testing, and (5) model implementation. Deep learning was employed to train 9,677 datasets using YOLOv5s, YOLOv5m, and YOLOv5l algorithms. The accuracy of the deep learning model using the YOLOv5s, YOLOv5m, and YOLOv5l algorithms was 89.35%; 91.29%; and 79.43% respectively. The precision value obtained is 99.90%; 99.80%; and 99.89% respectively. While the recall value obtained was 89.43%; 91.46%; and 79.50% respectively. Based on these results indicate that the deep learning model was capable to detect rice stands with high accuracy and precision. The model can be used to detect rice in the early stages of cultivation with a web-based user interface implemented with the Python programming language on a local computer.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112152
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository