View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Artificial Neural Network untuk Outflow Volume Larutan Nutrisi Sistem Hidroponik Irigasi Tetes Tanaman Melon pada Fase Vegetatif

      Thumbnail
      View/Open
      Cover (841.1Kb)
      Fullteks (2.069Mb)
      Lampiran (855.5Kb)
      Date
      2021
      Author
      Septiadi, Ananda Putra
      Suhardiyanto, Herry
      Metadata
      Show full item record
      Abstract
      Hubungan antara parameter lingkungan pertumbuhan tanaman melon pada sistem hidroponik irigasi tetes di dalam greenhouse dan kondisi tanaman melon terhadap outflow volume larutan nutrisi perlu diketahui sebagai dasar optimasi pemberian larutan nutrisi. Penelitian ini bertujuan untuk mengembangkan model Artificial Neural Network (ANN) parameter lingkungan pertumbuhan tanaman melon dan kondisi tanaman terhadap outflow volume larutan nutrisi menggunakan algoritma backpropagation. Model ANN yang dikembangkan menggunakan 596 data set yang dikumpulkan selama proses budidaya tanaman melon fase vegetatif pada sistem hidroponik irigasi tetes di dalam greenhouse. Pengembangan model ANN dilakukan dengan menentukan parameter model ANN terbaik yaitu meliputi learning rate initial, momentum, hiden layer size, dan maximum iteration. Parameter input meliputi intensitas radiometrik cahaya matahari, suhu udara, kelembapan relatif udara, umur tanaman, luas daun, tinggi tanaman, dan inflow volume larutan nutrisi, sedangkan parameter outputnya adalah outflow volume larutan nutrisi. Model ANN yang dikembangkan ternyata dapat memprediksi nilai outflow volume larutan nutrisi dengan kinerja yang sangat baik yaitu dengan nilai 0,96570 untuk R2, 45,28986 untuk RMSE, dan 6,94 % untuk MAPE.
       
      The relationship between environmental parameters of melon plant growth in a hydroponic drip irrigation system in a greenhouse and melon plant conditions on the outflow volume of nutrient solution needs to be known as the basis for optimization of nutrient solution supply. This study aims to develop an Artificial Neural Network (ANN) model for melon plant growth environmental parameters and plant conditions on the outflow of nutrient solution volume using the backpropagation algorithm. The ANN model was developed using 596 data sets collected during the vegetative phase of melon cultivation in a drip irrigation hydroponic system in a greenhouse. The development of the ANN model is done by determining the best ANN model parameters, which include initial learning rate, momentum, hidden layer size, and maximum iteration. The input parameters include the radiometric intensity of sunlight, air temperature, relative humidity, plant age, leaf area, plant height, and inflow volume of nutrient solution, while the output parameter is outflow volume of nutrient solution. The ANN model developed was able to predict the value of the nutrient solution volume outflow with very good performance, namely with a value of 0.96570 for R2, 45.28986 for RMSE, and 6.94 % for MAPE.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/107108
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository