View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Kajian beberapa metode klasifikasi citra digital terhadap data penginderaan jauh

      Thumbnail
      View/Open
      Full Text (624.1Kb)
      Date
      2014
      Author
      Muhammad, Faizal Teguh
      Wijayanto, Hari
      Wiweka
      Metadata
      Show full item record
      Abstract
      Klasifikasi citra digital terdiri dari banyak metode alternatif yang menghasilkan tingkat akurasi berbeda-beda. Akurasi ini sangat tergantung pada beberapa hal seperti training sample dan keragaman kenampakan lahan pada daerah citra yang dikaji. Penelitian ini bertujuan untuk membandingkan 4 metode klasifikasi citra digital yang diterapkan pada daerah dengan tingkat keragaman kenampakan lahan yang berbeda yaitu Kecamatan Ciomas, Kecamatan Dramaga dan Kecamatan Cibungbulang. Metode klasifikasi citra digital yang digunakan pada penelitian ini adalah kemungkinan maksimum, jarak Mahalanobis, jaringan syaraf tiruan dan support vector machine. Hasil penelitian ini menyimpulkan bahwa kemungkinan maksimum merupakan metode klasifikasi citra yang paling baik pada citra di tiga kecamatan terpilih dengan nilai rata-rata akurasi keseluruhan sebesar 91.99% dan nilai rata-rata koefisien kappa sebesar 0.8772. Selain itu, metode support vector machine dan jaringan syaraf tiruan juga memberikan hasil yang cukup baik.
       
      Digital image classification is composed of many alternative methods that produced different levels of accuracy. This accuracy depends on several things such as training samples and the diversity of land on the appearance of the image regions studied. This study aimed to compare 4 digital image classification method which applied to areas with different land appearance diversity of the District Ciomas, District Dramaga and District Cibungbulang. Digital image classification methods that used in this study are maximum likelihood, Mahalanobis distance, artificial neural networks and support vector machine. The results of this study concluded that the maximum likelihood is the best image of image classification method of the three district chosen with the average value of overall accuracy was 91.99% and the average value of the kappa coefficient was 0.8772. In addition, support vector machine and artificial neural networks also provide good results. Keywords: commission error, image classification, kappa coefficient, omission error, overall accuracy
       
      URI
      http://repository.ipb.ac.id/handle/123456789/72535
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository