View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan metode ARCH/GARCH pada pemodelan harga penutupan saham di bursa efek indonesia periode 2005-2013

      Thumbnail
      View/Open
      Full Text (1.101Mb)
      Date
      2014
      Author
      Khoirunnisa, Elok
      Susetyo, Budi
      Aidi, Muhammad Nur
      Metadata
      Show full item record
      Abstract
      Saham merupakan bukti kepemilikan seseorang terhadap suatu Perseroan Terbatas. Harga saham bergerak secara fluktuatif setiap harinya sehingga menyebabkan terjadinya volatilitas. Volatilitas merupakan sebuah pola ragam dari deret waktu, khususnya deret waktu keuangan dan disebut tidak stasioner karena keragamannya yang tidak konstan. Kondisi tersebut memungkinkan terjadinya heteroskedastisitas yang menyebabkan perlu dianalisis lebih lanjut setelah melakukan pemodelan ARIMA Box-Jenskin yaitu memodelkan ragam dengan menggunakan metode Autoregressive Conditional Heteroscedasticity (ARCH) dan Generalized Conditional Heteroscedasticity (GARCH) yang diperkenalkan oleh Robert Engle dan Tim Bollerslev untuk mengatasi masalah heteroskedastisitas. Dari hasil pemodelan data harga penutupan saham diperoleh model terbaik yaitu model rataan ARIMA(1,1,2) dan model ragam GARCH(1,1) yaitu Zt = 1.9999Zt-1 – 0.9999Zt-2 + 0.9072et-1 – 0.0897et-2 + εt. Hal ini berarti ragamnya dipengaruhi oleh kuadrat sisaan dan ragam bersyarat satu periode yang lalu. Hasil dari validasi model didapatkan nilai MAPE sebesar 1.31% dan nilai MAD sebesar 63.8411 sehingga dapat disimpulkan bahwa model yang dihasilkan valid. Kata kunci : ARCH, GARCH, heteroskedastisitas, volatilitas.
       
      Stock is proof of person’s ownership to a limited company liability. Stock prices have daily fluctuate moves basis thus causing volatility. Volatility is a variances pattern of time series, especially financial time series, and then that is not stationary causing the variances are not constant. These condition allow for heteroscedasticity, and then need further analysis after doing ARIMA Box-Jenskin’s modeling then doing variances modeling with Autoregressive Conditional Heteroscedasticity (ARCH) and Generelized Autoregressive Conditional Heteroscedasticity (GARCH) introduced by Robert Engle and Tim Bollerslev to solve the problem of heteroscedasticity. From the results of closing prices data modeling we get ARIMA(1,1,2) for the best mean model and GARCH(1,1) for the best variance model. This means that the variances are affected by square residuals and conditional variance. The results obtained from the model validation MAPE value is 1.31% and MAD value is 63.8411 so it can be concluded that the resulting model is valid. Keywords : ARCH, GARCH, heteroscedasticity, volatility
       
      URI
      http://repository.ipb.ac.id/handle/123456789/72163
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository