Kajian Klasifikasi Citra Hama Ulat Api Kelapa Sawit Menggunakan Metode Machine Learning dan Deep Learning
Abstract
Kelapa sawit merupakan komoditas penting di Indonesia, dengan salah satu tantangan utama berasal dari serangan hama ulat api. Identifikasi spesies hama menjadi tahapan penting dalam upaya pencegahan serangan tersebut, sehingga diperlukan metode yang efektif untuk mengenali spesies hama, khususnya ulat api. Penelitian ini menerapkan klasifikasi citra menggunakan 3 pendekatan, yakni machine learning dengan Support Vector Machine (SVM), Histogram of oriented gradients (HOG) sebagai teknik ekstraksi fitur pada SVM (HOG-SVM), dan deep learning dengan Convolutional Neural Network (CNN). Masing-masing pendekatan dioptimalkan melalui proses hyperparameter tuning menggunakan Tree-structured Parzen Estimator (TPE) dan stratified k-fold crossvalidation. Evaluasi kinerja model diukur menggunakan metrik macro average F1-score dan waktu prediksi per citra. Hasil penelitian menunjukkan CNN memberikan kinerja terbaik dengan F1-score 90% dan waktu prediksi 0,0105 detik. HOG-SVM memperoleh F1-score 69% dengan lama prediksi 0,0006 detik, sedangkan SVM mencapai 52% dengan waktu prediksi 0,0403 detik. Temuan ini mengindikasikan CNN unggul dalam menangani data citra dengan kompleksitas tinggi, sedangkan HOG-SVM dapat menjadi alternatif yang efisien pada kondisi keterbatasan sumber daya komputasi. Oil palm is an important commodity in Indonesia, with one of the main challenges being caterpillar pest attacks. Identifying pest species is a crucial step in preventing such attacks. Therefore, an effective method for species classification is required. This study applies image classification using three approaches: machine learning with Support Vector Machine (SVM), Histogram of Oriented Gradients as a feature extraction technique combined with SVM (HOG-SVM), and deep learning with Convolutional Neural Network (CNN). Each approach was optimized through hyperparameter tuning using Tree-structured Parzen Estimator (TPE) and validated using stratified k-fold cross-validation. Model performance was evaluated using the macro average F1-score and prediction time for a single image. The results show that CNN achieved the best performance with an F1-score of 90% and prediction time of 0.0105 seconds. HOG-SVM obtained an F1-score of 69% with a prediction time of 0.0006 seconds, while SVM only reached 52% with a prediction time of 0.0403 seconds. These findings indicate that CNN excels in handling image data, whereas HOG-SVM can serve as an efficient alternative under limited computational resources.
