View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritma Self Organizing Maps (SOM) dan K-Medoids dalam Penggerombolan Indikator Kriminalitas di Sumatera Utara

      Thumbnail
      View/Open
      Cover (381.4Kb)
      Fulltext (1003.Kb)
      Lampiran (368.9Kb)
      Date
      2025
      Author
      Putri, Azzahra Adelia
      Sartono, Bagus
      Sadik, Kusman
      Metadata
      Show full item record
      Abstract
      Kriminalitas merupakan bentuk tindakan melanggar hukum yang berdampak negatif terhadap masyarakat, baik secara ekonomi maupun psikologis. Provinsi Sumatera Utara merupakan salah satu provinsi dengan jumlah kasus kriminalitas tertinggi. Penelitian ini bertujuan untuk menggerombolkan kabupaten/kota di Provinsi Sumatera Utara tahun 2024 berdasarkan indikator kriminalitas menggunakan algoritma Self-Organizing Maps (SOM) dan K-Medoids, melihat efektivitas kedua metode tersebut, serta mengidentifikasi distribusi kabupaten/kota berdasarkan hasil penggerombolan. Hasil terbaik diperoleh dari metode K-Medoids dengan data yang telah melalui proses winsorizing 5%, yang membagi wilayah menjadi dua gerombol. Gerombol 1 terdiri atas 9 wilayah yang didominasi wilayah perkotaan dengan rata-rata kriminalitas lebih tinggi, sedangkan Gerombol 2 terdiri dari 19 wilayah yang mayoritas merupakan kabupaten dengan tingkat kriminalitas yang lebih rendah. Kemampuan K-Medoids dalam membentuk gerombol yang jelas dan seimbang secara visual mendukung interpretasi spasial yang lebih akurat. Penelitian ini memberikan wawasan penting bagi pembuat kebijakan dan aparat penegak hukum dalam merumuskan strategi pencegahan kejahatan yang lebih terarah di Provinsi Sumatera Utara.
       
      Crime is a form of unlawful behavior that negatively impacts society both economically and psychologically. North Sumatra Province is one of the provinces with the highest number of crime cases. This study aims to cluster the regencies/cities in North Sumatra Province in 2024 based on crime indicators using the Self-Organizing Maps (SOM) and K-Medoids algorithms, assess the effectiveness of both methods, and identify the distribution of regions based on the clustering results. The best results were obtained using the K-Medoids method on data that had undergone a 5% winsorizing process, which grouped the regions into two clusters. Cluster 1 consists of 9 regions, predominantly urban areas with a higher average crime rate, while Cluster 2 consists of 19 regions, mostly regencies with a lower crime rate. The ability of K-Medoids to form visually clear and balanced clusters supports more accurate spatial interpretation. This study provides valuable insights for policymakers and law enforcement agencies in formulating more targeted crime prevention strategies in North Sumatra Province.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166844
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository