Show simple item record

dc.contributor.advisorSumertajaya, I Made
dc.contributor.advisorMualifah, Laily Nissa Atul
dc.contributor.authorPutra, Adley Dityo Valentinus
dc.date.accessioned2025-07-29T04:01:46Z
dc.date.available2025-07-29T04:01:46Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/166097
dc.description.abstractSulitnya proses pengambilan keputusan karena ketidakpastian di dalamnya dapat dipermudah dengan melakukan peramalan. Multiple Input Multiple Output Long Short-Term Memory (MIMO LSTM) adalah teknik peramalan multivariat dengan pendekatan machine learning. Dalam peramalan machine learning, penyetelan hyperparameter, penggunaan validasi walk forward, dan penambahan kovariat seperti efek kalender dapat meningkatkan performa model. Peramalan inflasi tiap komponen membantu proses penyusunan kebijakan pemerintah yang lebih terfokus. Penelitian ini bertujuan mengevaluasi pengaruh penyetelan hyperparameter (jumlah neuron, lapisan tersembunyi, dan laju pembelajaran), penggunaan metode validasi walk forward, serta penambahan kovariat efek kalender terhadap performa MIMO LSTM dalam peramalan komponen inflasi (tingkat inflasi inti, harga diatur, dan harga bergejolak). Data sekunder yang digunakan memiliki frekuensi bulanan dan dimulai dari April 2009 sampai Maret 2025. Penelitian dimulai dengan eksplorasi data, lalu pelatihan dan evaluasi model, serta diakhiri dengan peramalan data. Kombinasi hyperparameter terbaik—5 neuron, 2 lapisan tersembunyi LSTM, dan learning rate 10-3, serta dengan penambahan kovariat efek kalender—dengan rataan RMSE 0,18, MAE 0,15, MedAE 0,15, MAPE 3 × 1014%, dan SMAPE 43,72% menghasilkan peramalan dari April 2025 sampai Maret 2029 untuk tingkat inflasi inti, harga diatur, dan harga bergejolak berturut-turut berfluktuasi antara 0 – 0,4%, 0 – 1%, dan -1 – 2%.
dc.description.abstractThe complexity of decision-making due to uncertainty can be mitigated through forecasting. Multiple Input Multiple Output Long Short-Term Memory (MIMO LSTM) is a robust multivariate forecasting method using a Machine Learning approach. Its model performance can be improved with hyperparameter tuning, walk forward validation, and calendar effect covariates. Forecasting inflation components supports more targeted government policies. This study evaluates the impact of tuning (number of neurons, hidden layers, and learning rate), walk forward validation, and calendar effect covariates on MIMO LSTM’s performance in forecasting inflation components (core, administered price, and volatile goods). Monthly secondary data from April 2009 to March 2025 is used. The research involves data exploration, model training, evaluation, and forecasting. The best model—using 5 neurons, 2 LSTM’s hidden layers, a learning rate of 10?³, and calendar effect covariates—achieves RMSE 0.18, MAE 0.15, MedAE 0.15, MAPE 3 × 10¹4%, and SMAPE 43.72%. The model forecasts inflation from April 2025 to March 2029, with predicted rates for core, administered price, and volatile goods inflation ranging from 0 to 0.4%, 0 to 1%, and –1 to 2%, respectively.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePengaruh Penambahan Kovariat Efek Kalender terhadap Performa MIMO LSTM dalam Peramalan Komponen Inflasiid
dc.title.alternativeImpact of Adding Calendar Effect Covariates on MIMO LSTM Performance in Forecasting Inflation Components
dc.typeSkripsi
dc.subject.keywordInflasiid
dc.subject.keywordMIMO LSTMid
dc.subject.keywordperamalanid
dc.subject.keywordhyperparameterid
dc.subject.keywordkovariatid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record