View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Performa Model Panel Spasial untuk Mengidentifikasi Faktor yang Memengaruhi Persentase Penduduk Miskin

      Thumbnail
      View/Open
      Cover (580.5Kb)
      Fulltext (1.300Mb)
      Lampiran (424.1Kb)
      Date
      2025
      Author
      Anggraeni, Vita Rizkyana
      Anisa, Rahma
      Sadik, Kusman
      Metadata
      Show full item record
      Abstract
      Kemiskinan merupakan permasalahan ekonomi suatu negara. Data dari BPS menunjukkan bahwa persentase penduduk miskin nasional di Indonesia per Maret 2023 adalah sebesar 9,36 persen. Meskipun menjadi provinsi pusat pertanian, Jawa Tengah dan Jawa Timur memiliki persentase penduduk miskin yang lebih tinggi dibandingkan persentase penduduk miskin nasional. Kedekatan geografis antara kedua provinsi memungkinkan adanya ketergantungan spasial sehingga digunakan model dependensi spasial pada kondisi tersebut. Tujuan dari penelitian ini adalah untuk membandingkan performa spatial autoregressive model (SAR), spatial error model (SEM), dan spatial durbin model (SDM) serta mengidentifikasi faktor-faktor yang memengaruhi persentase penduduk miskin di Provinsi Jawa Tengah dan Jawa Timur pada tahun 2019–2023. Data yang digunakan terdiri dari 73 unit amatan kabupaten/kota pada 5 tahun pengamatan. Hasil penelitian menunjukkan bahwa model panel spasial terpilih adalah SAR-FE dengan matriks pembobot 4-NN. Model ini menghasilkan nilai adjusted R-squared sebesar 67,8% dan nilai AIC sebesar 1648,411. Peubah-peubah yang berpengaruh signifikan terhadap persentase penduduk miskin, yaitu tingkat partisipasi angkatan kerja, angka harapan hidup, persentase rumah tangga yang memiliki akses terhadap sanitasi layak, dan persentase PDRB sektor pertanian.
       
      Poverty is an economic problem for a country. Data from BPS shows that the percentage of the national poor population in Indonesia as of March 2023 is 9,36 percent. Despite being agricultural center provinces, Central Java and East Java have a higher percentage of poor people than the percentage of the national poor population. The close geographical location of the two provinces makes possible spatial dependence. Therefore, a spatial dependency model is used in this case. The purpose of this study was to compare the performance of the spatial autoregressive model (SAR), spatial error model (SEM), and spatial durbin model (SDM) and to identify the factors that affect the percentage of poor people in Central Java and East Java Provinces in 2019–2023. The data used consists of 73 district/city over 5 years of observation. The results revealed that the selected spatial panel model was SAR-FE with a 4-NN weighting matrix. This model had an adjusted R-squared value of 67,8% and an AIC value of 1648,411. The variables that significantly affected the percentage of poor people were labor force participation rate, life expectancy rate, percentage of households with access to proper sanitation, and percentage of GRDP from the agricultural sector.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166061
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository