Analisis Pola Spasial Perolehan Suara pada Pemilihan Presiden Indonesia Tahun 2024
Abstract
Dinamika sosial-politik di suatu wilayah dapat terlihat melalui pola distribusi perolehan suara antarwilayah dalam pemilu. Metode analisis yang dapat digunakan untuk melihat pola ini adalah Getis-Ord G_i^\ast dan Local Indicators of Spatial Association (LISA). Getis-Ord G_i^\ast dapat mengidentifikasi klaster spasial dengan nilai tinggi (hotspot) dan klaster spasial dengan nilai rendah (coldspot). Di lain sisi, LISA memiliki kemampuan mengungkap pola klaster spasial lokal signifikan (High-High atau Low-Low) dan pencilan spasial (High-Low atau Low-High). Penelitian ini bertujuan menganalisis hubungan spasial antarwilayah berdasarkan perolehan suara pasangan calon presiden dan wakil presiden di tingkat kabupaten/kota di Indonesia, serta menentukan kabupaten/kota dengan konsentrasi suara tinggi (hotspot) dan klaster spasial lokal High-High untuk setiap pasangan calon menggunakan metode Getis-Ord G_i^\ast dan LISA. Data yang digunakan berasal dari situs resmi Pemilu 2024 pada 514 kabupaten/kota di Indonesia. Hasil penelitian menunjukkan bahwa metode Getis-Ord G_i^\ast berhasil mengidentifikasi hotspot pada Paslon 1 di wilayah Aceh dan Sumatera Barat, Paslon 2 di wilayah Kalimantan dan Sulawesi, serta Paslon 3 di wilayah Jawa Tengah, Bali, Nusa Tenggara Timur, dan Papua. Analisis LISA memberikan hasil yang lebih detail dengan mengkonfirmasi mayoritas hotspot sebagai klaster High-High dan mampu mengidentifikasi pencilan spasial (Low-High dan High-Low) yang tidak terdeteksi oleh Getis-Ord G_i^\ast. Kedua metode menunjukkan konsistensi tinggi dengan lebih dari 95% hotspot termasuk dalam klaster High-High. Temuan ini menunjukkan adanya pola suara yang beragam dan mencerminkan dinamika lokal yang khas. The socio-political dynamics in a region can be observed through the vote distribution patterns across areas in an election. Analysis methods that can be used to identify these patterns are Getis-Ord G_i^\ast and Local Indicators of Spatial Association (LISA). Getis-Ord G_i^\ast identifies spatial clusters with high values (hotspots) and low values (coldspots). Meanwhile, LISA is able to reveal statistically significant local spatial cluster patterns (High-High or Low-Low) and spatial outliers (High-Low or Low-High). This study aims to identify spatial patterns in the vote acquisition of presidential and vice-presidential candidates in the 2024 Indonesian Election using Getis-Ord G_i^\ast and LISA methods. The data used was obtained from the official Pemilu 2024 website, covering 514 regencies/cities in Indonesia. The results of this study show that Getis-Ord G_i^\ast methods successfully identified hotspots for Candidate Pair 1 in Aceh and West Sumatera regions, Candidate Pair 2 in Kalimantan and Sulawesi regions, and Candidate Pair 3 in Central Java, Bali, East Nusa Tenggara, and Papua regions. LISA analysis provides more detailed results by confirming the majority of hotspots as High-High clusters and was able to identify spatial outliers that were not detected by Getis-Ord G_i^\ast. Both methods showed high consistency with more than 95% of hotspots falling into High-High clusters. These findings demonstrate diverse vote patterns and reflect distinctive local dynamics.
