Show simple item record

dc.contributor.advisorMasjkur, Mohammad
dc.contributor.advisorRizki, Akbar
dc.contributor.authorWardani, Fajryanti Kusuma
dc.date.accessioned2025-07-24T23:52:57Z
dc.date.available2025-07-24T23:52:57Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/165769
dc.description.abstractModel Autoregressive Distributed Lag (ARDL) merupakan analisis deret waktu multivariat yang mampu menangkap hubungan jangka pendek dan jangka panjang antara peubah. Salah satu indikator penting dalam sistem peringatan dini banjir di Jakarta adalah Tinggi Muka Air (TMA) di Pintu Air Manggarai. Kota Bogor, yang dikenal sebagai "Kota Hujan", berperan signifikan dalam siklus hidrologi kawasan Jabodetabek. Tingginya curah hujan di Bogor menyebabkan aliran air besar menuju Jakarta, yang pada akhirnya memengaruhi kondisi TMA. Penelitian ini menggunakan data harian dari tahun 2022 hingga 2024 dengan peubah respon berupa TMA, serta peubah penjelas meliputi curah hujan, suhu rata-rata, kelembapan relatif, dan kecepatan angin di Kota Bogor. Pemilihan lag optimal dilakukan menggunakan Cross Corelation Function (CCF). Model ARDL yang dibangun memiliki kemampuan peramalan yang baik dengan nilai Mean Absolute Percentage (MAPE) sebesar 2,83%. Hasil analisis menunjukkan bahwa peubah curah hujan, suhu rata-rata, dan kelembapan relatif berpengaruh positif terhadap TMA, sementara kecepatan angin berpengaruh negatif.
dc.description.abstractThe Autoregressive Distributed Lag (ARDL) model is a multivariate time series approach that allows for the estimation of both short-run and long-run dynamics among variables. One of the key indicators in Jakarta's flood early warning system is the water level at the Manggarai Water Gate. Bogor City, known as the "Rain City," plays a significant role in the hydrological cycle of the Jabodetabek region. High rainfall in Bogor contributes to substantial water flow toward Jakarta, ultimately affecting the water level conditions. Daily data from 2022 to 2024 are used in this study, with the response variable being water level at the Manggarai Water Gate, and the explanatory variables including rainfall, average temperature, relative humidity, and wind speed in Bogor City. The optimal lag selection was conducted using the Cross-Correlation Function (CCF). The constructed ARDL model demonstrates strong forecasting performance, with a Mean Absolute Percentage Error (MAPE) of 2.83%. The analysis results indicate that rainfall, average temperature, and relative humidity have a positive effect on water level at the Manggarai Water Gate, while wind speed has a negative effect.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleModel Autoregressive Distributed Lag Pengaruh Faktor Cuaca Kota Bogor Terhadap Tinggi Muka Air di Jakartaid
dc.title.alternativeAutoregressive Distributed Lag Model of the Influence of Weather Factors in Bogor on Water Level in Jakarta
dc.typeSkripsi
dc.subject.keywordperamalanid
dc.subject.keywordforecastingid
dc.subject.keywordwater levelid
dc.subject.keywordfaktor cuacaid
dc.subject.keywordmodel ARDLid
dc.subject.keywordPintu Air Manggaraiid
dc.subject.keywordTinggi Muka Air (TMA)id
dc.subject.keywordARDL modelid
dc.subject.keywordManggarai Water Gateid
dc.subject.keywordweather factorsid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record