Show simple item record

dc.contributor.advisorSilvianti, Pika
dc.contributor.advisorRahman, La Ode Abdul
dc.contributor.authorHafiza, Natasha Muti
dc.date.accessioned2025-07-20T22:37:32Z
dc.date.available2025-07-20T22:37:32Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/165377
dc.description.abstractKota Palembang menghadapi tantangan serius akibat memburuknya kualitas udara yang dipicu oleh aktivitas industri, transportasi, serta kebakaran hutan dan lahan. Penelitian ini bertujuan untuk membangun model prediksi Indeks Kualitas Udara (ISPU) harian menggunakan metode Long Short-Term Memory (LSTM). Data yang digunakan mencakup lima indikator yaitu PM2.5, SO2, CO, O3, dan NO2 selama tahun 2024. Tahapan analisis meliputi normalisasi data menggunakan Min Max Normalization, imputasi data hilang dengan interpolasi linier, pembagian data latih dan uji sebesar 75:25, serta validasi model menggunakan metode walk forward cross validation. Evaluasi performa model dilakukan menggunakan Root Mean Square Error (RMSE) dan Mean Absolute Percentage Error (MAPE). Hasil menunjukkan bahwa model LSTM mampu memberikan performa prediksi yang baik, dengan nilai RMSE terendah pada NO2 (0,073), diikuti oleh O3 (0,079), SO2 (0,098), PM2.5 (0,111), dan CO (0,167). Model terbaik untuk NO2 diperoleh pada kombinasi batch size 16 dan learning rate 0,01. Nilai MAPE berturut-turut untuk masing-masing indikator adalah PM2.5 (34,92%), SO2 (10,97%), CO (5,61%), O3 (7,41%), dan NO2 (9,30%). Model terbaik digunakan untuk meramalkan ISPU selama tujuh hari ke depan. Hasil ini menunjukkan bahwa LSTM efektif dalam memodelkan data deret waktu ISPU dan berpotensi menjadi alat bantu dalam perencanaan mitigasi polusi udara jangka pendek.
dc.description.abstractThe city of Palembang is facing serious challenges due to deteriorating air quality, triggered by industrial activities, transportation, as well as forest and land fires. This study aims to develop a daily Air Quality Index (AQI) prediction model using the Long Short-Term Memory (LSTM) method. The dataset consists of five air quality indicators—PM2.5, SO2, CO, O3, and NO2—recorded throughout 2024. The analysis stages include data normalization using Min-Max Normalization, missing value imputation with linear interpolation, splitting the dataset into 75:25 for training and testing, and model validation using the walk-forward cross validation method. Model performance was evaluated based on the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results show that the LSTM model provides good predictive performance, with the lowest RMSE obtained for NO2 (0.073), followed by O3 (0.079), SO2 (0.098), PM2.5 (0.111), and CO (0.167). The best model for NO2 was achieved using a batch size of 16 and a learning rate of 0.01. The corresponding MAPE values for each indicator were PM2.5 (34.92%), SO2 (10.97%), CO (5.61%), O3 (7.41%), and NO2 (9.30%). The best-performing models were then used to forecast AQI values for the following seven days. These findings indicate that LSTM is effective in modeling AQI time series data and has the potential to serve as a decision-support tool for short-term air pollution mitigation planning.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePenerapan Metode Long Short-Term Memory untuk Memprediksi Indeks Kualitas Udara di Kota Palembangid
dc.title.alternative
dc.typeSkripsi
dc.subject.keywordLong Short-Term Memory (LSTM)id
dc.subject.keywordtime seriesid
dc.subject.keywordair quality indexid
dc.subject.keywordforecastid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record