View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Karbon Dioksida Negara di ASEAN Menggunakan Regresi Terboboti Geografis dan Temporal

      Thumbnail
      View/Open
      Cover (626.7Kb)
      Fulltext (2.287Mb)
      Lampiran (294.5Kb)
      Date
      2025
      Author
      Naufal, Nabil
      Djuraidah, Anik
      Angraini, Yenni
      Pradana, Alfa Nugraha
      Metadata
      Show full item record
      Abstract
      Karbon dioksida (CO2) merupakan komponen utama gas rumah kaca yang paling berkontribusi terhadap pemanasan global akibat aktivitas manusia. Emisi CO2 di kawasan Asia Tenggara (ASEAN) menunjukkan tren peningkatan seiring dengan pertumbuhan ekonomi, urbanisasi, dan ketergantungan terhadap energi fosil. Keragaman kondisi sosial, ekonomi, dan lingkungan antar negara menyebabkan hubungan antara emisi CO2 dan faktor-faktor pemicunya tidak seragam secara geografis maupun temporal. Penelitian ini bertujuan untuk menganalisis dinamika spasial-temporal tersebut menggunakan metode Regresi Terboboti Geografis dan Temporal (RTGT). Data yang digunakan mencakup CO2 density (EDGAR), NDVI (MODIS), curah hujan (ERA5), indikator ekonomi & demografi (World Bank), serta energi (EMBER) untuk periode 2018–2023. Hasil analisis menunjukkan bahwa sebelum 2020, pertumbuhan ekonomi dan konsumsi listrik menjadi faktor utama peningkatan emisi. Namun setelah pandemi COVID-19, faktor lingkungan dan energi seperti NDVI dan ketergantungan bahan bakar fosil mulai berperan lebih besar di beberapa negara. Model RTGT terbaik menggunakan fungsi kernel bisquare dan lebar jendela adaptif, dengan nilai R² sebesar 0,99. Pergeseran pendorong emisi dan adanya perbedaan pola antar negara ini membuktikan bahwa setiap wilayah memiliki profil risiko emisi yang unik dan dinamis. Temuan ini menegaskan perlunya kebijakan mitigasi yang adaptif terhadap dinamika spasial dan temporal, serta pentingnya kolaborasi regional untuk mengatasi tantangan emisi di ASEAN.
       
      Carbon dioxide (CO2) is the main greenhouse gas and the largest contributor to global warming driven by human activities. In the Southeast Asian (ASEAN) region, CO2 emissions exhibit an increasing trend, driven by economic growth, urbanization, and reliance on fossil fuels. The diverse social, economic, and environmental conditions across countries lead to a spatially and temporally heterogeneous relationship between CO2 emissions and their determinants. This research analyzes these spatio-temporal dynamics using the Geographically and Temporally Weighted Regression (GTWR) method. The data used include CO2 density from EDGAR, NDVI from MODIS, precipitation from ERA5, economic and demographic indicators from the World Bank, and energy indicators from EMBER for the period 2018–2023. The analysis reveals that pre-2020, economic growth and electricity consumption were the primary drivers of increased emissions. However, post-pandemic, environmental and energy factors such as NDVI and fossil fuel dependency became more significant in several countries. The optimal GTWR model, which utilized a bisquare kernel function and an adaptive bandwidth, achieved an R² value of 0,99. This shift in emission drivers and the differing patterns among countries demonstrate that each region possesses a unique and dynamic emission risk profile. These findings underscore the need for mitigation policies adaptive to spatio-temporal dynamics, as well as the importance of regional collaboration to address emission challenges in ASEAN.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165229
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository