| dc.contributor.advisor | Rahardiantoro, Septian | |
| dc.contributor.advisor | Masjkur, Mohammad | |
| dc.contributor.author | Rofiana, Cahyani Dyah | |
| dc.date.accessioned | 2025-07-10T04:45:40Z | |
| dc.date.available | 2025-07-10T04:45:40Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/164486 | |
| dc.description.abstract | Udara bersih merupakan komponen penting bagi kesehatan manusia,
terutama di kota besar seperti Jakarta dengan mobilitas yang tinggi. Aktivitas
tersebut menghasilkan polutan, salah satunya partikel halus PM2.5 yang sangat
berbahaya. Penelitian ini menerapkan model spatio-temporal generalized lasso
termodifikasi dengan matriks penalti D berbasis queen’s contiguity untuk
mengidentifikasi pengaruh yang sama pada peubah meteorologi terhadap PM2.5 di
setiap waktu dan wilayah. Penentuan parameter regularisasi dilakukan dengan
membandingkan nilai lambda optimum dari dua metode validasi, yaitu
Approximate Leave-One-Out Cross-Validation (ALOCV) dan Generalized Cross-Validation (GCV). Lambda optimum dari GCV sebesar 34,673 dipilih dengan nilai
RMSE terkecil sebesar 57,220. Hasil analisis menunjukkan bahwa pengaruh faktor
meteorologi cenderung bersifat heterogen berdasarkan waktu atau musim tertentu.
Kelembaban (X2) merupakan peubah paling berpengaruh secara spasial dan
temporal, lalu diikuti oleh curah hujan (X4) dan kecepatan angin (X3) dengan
pengaruh berlawanan arah, serta suhu (X1) dengan pengaruh searah terhadap PM2.5.
Generalized lasso mampu mengidentifikasi pola spasial dan temporal dari faktor
meteorologi terhadap PM2.5 secara efektif, serta memberikan kontribusi penting
dalam pemahaman dinamika polusi udara berbasis wilayah dan waktu. | |
| dc.description.abstract | Clean air is a crucial component for human health, particularly in
metropolitan areas such as Jakarta, where mobility is high. Such activity contributes
to the emission of pollutants, including fine particulate matter (PM2.5), which poses
significant health risks. This study applies a modified spatio-temporal generalized
lasso model with a penalty matrix ?? based on queen’s contiguity to identify
consistent effects of meteorological variables on PM2.5 across both time and space.
The regularization parameter D is determined by comparing two validation
methods: Approximate Leave-One-Out Cross-Validation (ALOCV) and
Generalized Cross-Validation (GCV). The optimal lambda from GCV is 34.673
was selected due to the lowest RMSE of 57.220. The analysis reveals that
meteorological influences on PM2.5 are heterogeneous depending on time or
seasonal patterns. Humidity (X2) is identified as the most influential variable both
spatially and temporally, followed by rainfall (X4) and wind speed (X3), which
show inverse effects, and temperature (X1), which shows a positive association
with PM2.5. The generalized lasso effectively captures spatio-temporal patterns of
meteorological impacts on PM2.5 and contributes significantly to understanding the
dynamics of air pollution across regions and time. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Pemodelan Spatio-Temporal PM2.5 di Jakarta Berdasarkan Faktor Meteorologi Menggunakan Modifikasi Generalized Lasso | id |
| dc.title.alternative | Spatio-Temporal Modeling of PM2.5 in Jakarta Using a Modified Generalized Lasso Based on Meteorological Factors | |
| dc.type | Skripsi | |
| dc.subject.keyword | generalized LASSO | id |
| dc.subject.keyword | partikulat (PM2.5) | id |
| dc.subject.keyword | meteorologi | id |
| dc.subject.keyword | spasial-temporal | id |