Analisis Klasifikasi Citra Tingkat Kematangan Tandan Buah Segar (TBS) Kelapa Sawit Menggunakan EfficientNetV2B1
Date
2025Author
Adeva, Muhammad Farhan
Oktarina, Sachnaz Desta
Soleh, Agus Mohamad
Metadata
Show full item recordAbstract
Indonesia, sebagai produsen utama minyak kelapa sawit, sangat bergantung pada kualitas Crude Palm Oil (CPO), yang dipengaruhi oleh tingkat kematangan buah. Penilaian manual kematangan tandan buah segar (TBS) sering kali tidak konsisten dan tidak efisien. Penelitian ini menerapkan transfer learning dengan EfficientNetV2B1 untuk mengklasifikasikan kematangan TBS ke dalam tiga kategori yaitu mentah, matang, dan terlalu matang. Gugus data berisi 690 gambar dari dua sumber smartphone dan kamera mirrorless. Data dibagi menjadi 60% pelatihan, 20% validasi, dan 20% pengujian. Sebanyak 12 model diuji dengan variasi batch size (16 dan 32), tiga optimizer (Adam, AdamW, Nadam), serta dua jenis input (gambar saja dan gambar dengan jenis kamera). Fine tuning dilakukan menggunakan fungsi aktivasi Swish dan Softmax. Hasil menunjukkan bahwa jenis kamera tidak signifikan terhadap performa. Model terbaik yaitu model 3 dengan menggunakan batch size 16 dan optimizer Nadam, dengan balanced accuracy 85,17%, F1-score 82,34%, recall 85,30%, dan presisi 80,60%. Pendekatan ini terbukti efektif dalam meningkatkan efisiensi dan akurasi klasifikasi kematangan TBS. Indonesia, as a major producer of palm oil, relies heavily on the quality of Crude Palm Oil (CPO), which is influenced by fruit ripeness. Manual assessment of fresh fruit bunch (FFB) ripeness is often inconsistent and inefficient. This research applies transfer learning with EfficientNetV2B1 to classify FFB maturity into three categories: unripe, ripe, and overripe. The dataset contains 690 images from two sources of smartphone and mirrorless camera. The data is divided into 60% training, 20% validation, and 20% testing. A total of 12 models were tested with various batch sizes (16 and 32), three optimizers (Adam, AdamW, Nadam), and two types of inputs (image only and image with camera type). Fine tuning was performed using Swish and Softmax activation functions. Results showed that camera type is not significant to performance. The best model used a batch size of 16 and the Nadam optimizer, and achieved a balanced accuracy of 85.17%, F1-score of 82.34%, recall of 85.30%, and precision of 80.60%. This approach proved effective in improving the efficiency and accuracy of FFB ripeness classification.
