View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Topic Modeling of Social Media X Users’ Perceptions on The Kampus Merdeka Internship Program Using BERTopic

      Thumbnail
      View/Open
      Cover (4.495Mb)
      Fulltext (1.416Mb)
      Lampiran (1.037Mb)
      Date
      2025
      Author
      Azizah, Kamilah Nurul
      Notodiputro, Khairil Anwar
      Mualifah, Laily Nissa Atul
      Metadata
      Show full item record
      Abstract
      The Merdeka Belajar Kampus Merdeka (MBKM) program, initiated by the Ministry of Education, Culture, Research, and Technology, aims to bridge the gap between academic theory and industry needs. One of its flagship programs is the Kampus Merdeka Internship, designed to equip students with practical work experience. As a large-scale national program with widespread impact, its implementation has generated massive public discussion and diverse responses on social media platforms, particularly X. This study aims to implement BERTopic, a transformer-based topic modeling method, to identify the main topics in the discourse surrounding the program. The analysis was performed on 16,943 data collected from the X platform, covering the period from May 21, 2021, to February 28, 2025. The BERTopic modeling process involves IndoSBERT for text embedding, UMAP for dimensionality reduction, HDBSCAN for clustering, and c-TF-IDF for topic representation. The model was optimized using Optuna and the application of Maximal Marginal Relevance, yielding eight topics with a coherence score of 0.48 and a diversity score of 0.96. The identified topics cover benefits, such as professional development and financial support, as well as challenges ranging from administrative hurdles to ideological debates. These findings provide a basis for recommendations aimed at improving the program's implementation, governance, and sustainability.
       
      Program Merdeka Belajar Kampus Merdeka (MBKM) yang diinisiasi oleh Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi bertujuan menjembatani kesenjangan antara teori akademik dan kebutuhan industri. Salah satu program utamanya adalah Magang Kampus Merdeka yang dirancang untuk membekali mahasiswa dengan pengalaman kerja praktis. Sebagai program berskala nasional, pelaksanaannya menimbulkan berbagai respons dan diskusi publik yang masif di platform media sosial, khususnya X. Penelitian ini bertujuan menerapkan metode pemodelan topik berbasis transformer yaitu BERTopic untuk mengidentifikasi topik utama dalam diskusi mengenai program tersebut. Analisis dilakukan pada 16.943 data dari platform X untuk periode 21 Mei 2021–28 Februari 2025. Proses pemodelan BERTopic meliputi IndoSBERT untuk embedding teks, UMAP untuk reduksi dimensi, HDBSCAN untuk klasterisasi, dan c-TF-IDF untuk representasi topik. Model dioptimalkan menggunakan Optuna serta penerapan Maximal Marginal Relevance, yang menghasilkan delapan topik dengan skor koherensi 0,48 dan diversitas 0,96. Topik yang teridentifikasi mencakup manfaat seperti pengembangan profesional dan dukungan finansial, serta tantangan berupa kendala administratif hingga perdebatan ideologis. Temuan ini menjadi landasan rekomendasi untuk perbaikan implementasi, tata kelola, dan keberlanjutan program.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/164390
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository