View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Harga Penutupan Beberapa Saham Menggunakan Random Forest dan Artificial Neural Network

      Thumbnail
      View/Open
      Cover (2.205Mb)
      Fulltext (4.356Mb)
      Lampiran (4.487Mb)
      Date
      2025
      Author
      Faradita, Marsya
      Ruhiyat
      Khatizah, Elis
      Metadata
      Show full item record
      Abstract
      Prediksi harga saham penting bagi investor dalam pengambilan keputusan karena pasar saham yang dinamis. Penelitian ini memprediksi harga penutupan beberapa saham menggunakan Random Forest dan Artificial Neural Network (ANN) serta mengevaluasi kinerjanya dengan menggunakan mean absolute percentage error (MAPE). Data yang digunakan adalah data historis mingguan dari tiga saham di sektor berbeda pada periode 2022–2023. Model dilatih dengan peubah harga saham serta fitur tambahan, seperti moving average dan simpangan baku harga penutupan. Hasil penelitian menunjukkan bahwa performa kedua model bervariasi bergantung pada saham dan periode prediksi. Secara umum, Random Forest menunjukkan performa yang lebih konsisten pada berbagai kondisi pasar, sementara ANN menghasilkan prediksi yang lebih akurat pada saham dengan pola pergerakan harga yang relatif stabil. Studi ini memberikan wawasan bagi investor dalam memilih model prediksi yang sesuai berdasarkan karakteristik data sehingga membantu pengambilan keputusan investasi yang lebih baik.
       
      Stock price prediction is crucial for investors in making informed decisions due to the dynamic nature of the stock market. This study predicts the closing prices of selected stocks using Random Forest and Artificial Neural Network (ANN) models, and evaluates their performance using the mean absolute percentage error (MAPE). The data used consists of weekly historical prices from three stocks in different sectors during the period of 2022–2023. The models were trained using stock price variables along with additional features such as moving averages and standard deviations of closing prices. The results show that the performance of the two models varies depending on the stock and prediction period. In general, Random Forest demonstrates more consistent performance across different market conditions, while ANN provides more accurate predictions for stocks with relatively stable price movements. This study offers insights for investors in selecting the appropriate prediction model based on data characteristics, thus supporting better investment decision-making.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/164370
      Collections
      • UT - Actuaria [54]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository