Prediksi Harga Penutupan Beberapa Saham Menggunakan Random Forest dan Artificial Neural Network
Abstract
Prediksi harga saham penting bagi investor dalam pengambilan keputusan
karena pasar saham yang dinamis. Penelitian ini memprediksi harga penutupan
beberapa saham menggunakan Random Forest dan Artificial Neural Network
(ANN) serta mengevaluasi kinerjanya dengan menggunakan mean absolute
percentage error (MAPE). Data yang digunakan adalah data historis mingguan dari
tiga saham di sektor berbeda pada periode 2022–2023. Model dilatih dengan
peubah harga saham serta fitur tambahan, seperti moving average dan simpangan
baku harga penutupan. Hasil penelitian menunjukkan bahwa performa kedua model
bervariasi bergantung pada saham dan periode prediksi. Secara umum, Random
Forest menunjukkan performa yang lebih konsisten pada berbagai kondisi pasar,
sementara ANN menghasilkan prediksi yang lebih akurat pada saham dengan pola
pergerakan harga yang relatif stabil. Studi ini memberikan wawasan bagi investor
dalam memilih model prediksi yang sesuai berdasarkan karakteristik data sehingga
membantu pengambilan keputusan investasi yang lebih baik. Stock price prediction is crucial for investors in making informed decisions
due to the dynamic nature of the stock market. This study predicts the closing prices
of selected stocks using Random Forest and Artificial Neural Network (ANN)
models, and evaluates their performance using the mean absolute percentage error
(MAPE). The data used consists of weekly historical prices from three stocks in
different sectors during the period of 2022–2023. The models were trained using
stock price variables along with additional features such as moving averages and
standard deviations of closing prices. The results show that the performance of the
two models varies depending on the stock and prediction period. In general,
Random Forest demonstrates more consistent performance across different market
conditions, while ANN provides more accurate predictions for stocks with
relatively stable price movements. This study offers insights for investors in
selecting the appropriate prediction model based on data characteristics, thus
supporting better investment decision-making.
Collections
- UT - Actuaria [54]
