| dc.contributor.advisor | Alatas, Husin | |
| dc.contributor.advisor | Hardhienata, Hendradi | |
| dc.contributor.author | Hilalqi, Sulton | |
| dc.date.accessioned | 2025-07-07T23:41:41Z | |
| dc.date.available | 2025-07-07T23:41:41Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/164092 | |
| dc.description.abstract | Persamaan Schrödinger merupakan fondasi utama dalam mekanika kuantum. Dengan membuat suatu set persamaan dinamika sistem dari persamaan Schrödinger 1D tak bergantung waktu, dapat dianalisis kestabilannya melalui pencarian titik kritis, karakteristik nilai eigen, dan bifurkasi yang muncul akibat variasi parameter energi. Dinamika fungsi gelombang dalam berbagai bentuk potensial, baik yang memiliki bentuk fungsi eksplisit (seperti sinh, cosh, dan lainnya) maupun yang bersifat dinamis tanpa bentuk eksplisit, dianalisis menggunakan simulasi numerik di MATLAB. Hasil simulasi numerik menunjukkan bahwa nilai energi tertentu menghasilkan fungsi gelombang yang mengalami peluruhan atau pertumbuhan, serta menunjukkan fenomena osilasi. Selain itu, pendekatan ini berhasil memprediksi kuantisasi tingkat energi dan menunjukkan jenis bifurkasi non-klasik yaitu bifurkasi sadel-center. Studi ini memperlihatkan bahwa pendekatan dinamika sistem dapat menjadi alternatif dalam memahami perilaku sistem kuantum pada medan potensial kompleks yang sulit diselesaikan secara analitik. | |
| dc.description.abstract | The Schrödinger equation is a fundamental cornerstone in quantum mechanics. By formulating a set of dynamical system equations from the one-dimensional time-independent Schrödinger equation, its stability can be analyzed through the identification of critical points, eigenvalue characteristics, and bifurcations arising from variations in the energy parameter. The dynamics of the wave function under various potential forms—both with explicit functional expressions (such as sinh, cosh, and others) and dynamic potentials without explicit forms—are analyzed using numerical simulations in MATLAB. The numerical simulation results show that certain energy values lead to wave functions that decay or grow, as well as exhibit oscillatory behavior. Furthermore, this approach successfully predicts energy level quantization and reveals non-classical bifurcation transitions, specifically saddle-center bifurcations. This study demonstrates that the dynamical systems approach can serve as an alternative for understanding the behavior of quantum systems in complex potential fields that are difficult to solve analytically. | |
| dc.description.sponsorship | - | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Analisis Dinamika Sistem Persamaan Schrödinger dengan Variasi Medan Potensial | id |
| dc.title.alternative | Dynamical System Analysis of the Schrödinger Equation with Varying Potential Fields | |
| dc.type | Skripsi | |
| dc.subject.keyword | autonomous | id |
| dc.subject.keyword | bifurcation | id |
| dc.subject.keyword | dynamical system | id |
| dc.subject.keyword | Schrödinger equation | id |
| dc.subject.keyword | sub-routine ODE | id |