View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Dinamika Sistem Persamaan Schrödinger dengan Variasi Medan Potensial

      Thumbnail
      View/Open
      Cover (1.930Mb)
      Fulltext (1.094Mb)
      Lampiran (3.766Mb)
      Date
      2025
      Author
      Hilalqi, Sulton
      Alatas, Husin
      Hardhienata, Hendradi
      Metadata
      Show full item record
      Abstract
      Persamaan Schrödinger merupakan fondasi utama dalam mekanika kuantum. Dengan membuat suatu set persamaan dinamika sistem dari persamaan Schrödinger 1D tak bergantung waktu, dapat dianalisis kestabilannya melalui pencarian titik kritis, karakteristik nilai eigen, dan bifurkasi yang muncul akibat variasi parameter energi. Dinamika fungsi gelombang dalam berbagai bentuk potensial, baik yang memiliki bentuk fungsi eksplisit (seperti sinh, cosh, dan lainnya) maupun yang bersifat dinamis tanpa bentuk eksplisit, dianalisis menggunakan simulasi numerik di MATLAB. Hasil simulasi numerik menunjukkan bahwa nilai energi tertentu menghasilkan fungsi gelombang yang mengalami peluruhan atau pertumbuhan, serta menunjukkan fenomena osilasi. Selain itu, pendekatan ini berhasil memprediksi kuantisasi tingkat energi dan menunjukkan jenis bifurkasi non-klasik yaitu bifurkasi sadel-center. Studi ini memperlihatkan bahwa pendekatan dinamika sistem dapat menjadi alternatif dalam memahami perilaku sistem kuantum pada medan potensial kompleks yang sulit diselesaikan secara analitik.
       
      The Schrödinger equation is a fundamental cornerstone in quantum mechanics. By formulating a set of dynamical system equations from the one-dimensional time-independent Schrödinger equation, its stability can be analyzed through the identification of critical points, eigenvalue characteristics, and bifurcations arising from variations in the energy parameter. The dynamics of the wave function under various potential forms—both with explicit functional expressions (such as sinh, cosh, and others) and dynamic potentials without explicit forms—are analyzed using numerical simulations in MATLAB. The numerical simulation results show that certain energy values lead to wave functions that decay or grow, as well as exhibit oscillatory behavior. Furthermore, this approach successfully predicts energy level quantization and reveals non-classical bifurcation transitions, specifically saddle-center bifurcations. This study demonstrates that the dynamical systems approach can serve as an alternative for understanding the behavior of quantum systems in complex potential fields that are difficult to solve analytically.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/164092
      Collections
      • UT - Physics [1227]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository