View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Clustering K-Means dan HDBSCAN pada Neural Topic Modeling Menggunakan Embedding IndoSBERT Terhadap Ulasan Pengguna Aplikasi Mytelkomsel

      Thumbnail
      View/Open
      Cover (561.1Kb)
      Fulltext (5.821Mb)
      Lampiran (404.1Kb)
      Date
      2025
      Author
      Mustika, Diva Nisfu
      Wijayanto, Hari
      Dito, Gerry Alfa
      Metadata
      Show full item record
      Abstract
      Ketergantungan masyarakat terhadap layanan telekomunikasi semakin memperkuat peran penyedia akses telekomunikasi yang andal. Telkomsel, sebagai salah satu operator seluler terbesar di Indonesia, menghadirkan aplikasi MyTelkomsel untuk mempermudah pelanggan dalam mengakses berbagai layanan. Aplikasi ini telah menerima jutaan ulasan yang mencerminkan beragam pengalaman dan penilaian pengguna. Penelitian ini bertujuan untuk membandingkan kinerja algoritma K-Means dan HDBSCAN dalam BERTopic berdasarkan metrik koherensi dan keragaman topik, serta mengidentifikasi topik yang dibahas dalam ulasan pengguna MyTelkomsel. Sebanyak 88.057 ulasan dikumpulkan dari periode 1 November 2024 hingga 28 Februari 2025. Pemodelan topik dilakukan menggunakan BERTopic dengan embedding kalimat dari model IndoSBERT, reduksi dimensi dengan UMAP, dan penggerombolan menggunakan K-Means serta HDBSCAN. Representasi topik diperoleh melalui pembobotan c TF-IDF dan KeyBERTInspired untuk meningkatkan kualitas kata kunci. Evaluasi menggunakan metrik koherensi dan keragaman menunjukkan bahwa konfigurasi terbaik diperoleh dari K-Means dengan representasi topik bigram dan penyertaan hiperparameter stopwords serta KeyBERTInspired. Konfigurasi ini menghasilkan skor koherensi sebesar 0,76 dan keragaman 0,94. Topik dominan yang teridentifikasi mencakup keluhan terkait ketidakstabilan sinyal, mahalnya paket data, masalah performa aplikasi, serta beberapa topik positif yang menyoroti kepuasan dan apresiasi terhadap fitur layanan.
       
      The public's dependence on telecommunication services further strengthens the role of reliable telecommunication access providers. Telkomsel, one of the largest mobile operators in Indonesia, has launched the MyTelkomsel app to make it easier for customers to access various services. The app has received millions of reviews reflecting a wide range of user experiences and assessments. This study aims to compare the performance of the K-Means and HDBSCAN algorithms in BERTopic based on topic coherence and diversity metrics, as well as to identify the topics discussed in MyTelkomsel user reviews. A total of 88,057 reviews were collected from November 1, 2024, to February 28, 2025. Topic modeling was performed using BERTopic with sentence embeddings from the IndoSBERT model, dimension reduction with UMAP, and clustering using K-Means and HDBSCAN. Topic representations were obtained through c-TF-IDF and KeyBERTInspired weighting to improve keyword quality. Evaluation using coherence and diversity metrics shows that the best configuration is obtained from K-Means with bigram topic representation, inclusion of stopwords, and KeyBERTInspired. This configuration yielded a coherence score of 0.76 and a diversity of 0.94. The dominant topics identified include complaints related to signal instability, expensive data packages, application performance issues, and some positive topics highlighting satisfaction and appreciation for service features.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/162541
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository