View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Analisis K-median dan Fuzzy C-means Clustering pada Asuransi Kesehatan

      Thumbnail
      View/Open
      Cover (462.2Kb)
      Fulltext (1.912Mb)
      Lampiran (387.6Kb)
      Date
      2024
      Author
      Mertorini, Winda
      Budiarti, Retno
      Ardana, Ngakan Komang Kutha
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan untuk membandingkan metode k-median dan fuzzy c-means (FCM) clustering dalam mengelompokkan data pelanggan asuransi kesehatan. Data yang digunakan meliputi usia, BMI, gaya hidup, dan biaya kesehatan pelanggan di Amerika Serikat. Uji multikolinearitas menunjukkan tidak adanya masalah multikolinearitas, sehingga semua variabel dapat digunakan dalam analisis clustering. Penentuan jumlah cluster optimal dilakukan menggunakan indeks silhouette coefficient, yang menunjukkan bahwa dua cluster adalah pilihan terbaik untuk kedua metode. Berdasarkan evaluasi Davies-Bouldin Index (DBI), metode k-median terbukti lebih unggul dibandingkan FCM karena menghasilkan cluster yang lebih kompak dan terpisah dengan baik. Hasil clustering k-median juga menunjukkan pemisahan yang lebih jelas berdasarkan variabel kategorikal seperti gaya hidup. Keunggulan ini membuktikan bahwa metode k-median memiliki karakteristik cluster yang lebih relevan dengan perbedaan signifikan pada usia, BMI, kebiasaan merokok, dan biaya kesehatan/This study aims to compare the k-median and fuzzy c-means (FCM) clustering methods in segmenting health insurance customer data. The data includes age, BMI, lifestyle, and healthcare costs of customers in the United States. Multicollinearity tests showed no multicollinearity issues, allowing all variables to be used in the clustering analysis. The optimal number of clusters was determined using the silhouette coefficient index, indicating that two clusters were the best choice for both methods. Based on the evaluation using the Davies-Bouldin Index (DBI), the k-median method proved superior to FCM by producing more compact and well-separated clusters. K-median clustering results also displayed clearer separation based on categorical variables such as lifestyle. This superiority demonstrates that the k-median method provides more relevant cluster characteristics with significant differences in age, BMI, smoking habits, and healthcare.
      URI
      http://repository.ipb.ac.id/handle/123456789/160218
      Collections
      • UT - Actuaria [205]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository