Show simple item record

dc.contributor.advisorJulianto, Mochamad Tito
dc.contributor.advisorMangku, I Wayan
dc.contributor.authorAl-Fariz, Buya
dc.date.accessioned2024-10-23T12:26:14Z
dc.date.available2024-10-23T12:26:14Z
dc.date.issued2024
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/159128
dc.description.abstractAnemia merupakan masalah kesehatan yang ditandai dengan penurunan kadar hemoglobin di bawah batas normal. Pendekatan yang lebih baik dalam diagnosis anemia diperlukan untuk memastikan penanganan yang tepat. Penelitian ini bertujuan membandingkan kinerja beberapa model klasifikasi pada machine learning untuk mendiagnosis anemia menggunakan data dengan variabel gender, hemoglobin, hematocrit, MCH, MCHC, MCV, RBC, dan variabel anemia. Empat model yang digunakan, yaitu support vector machine (SVM) kernel linear, support vector machine (SVM) kernel polynomial, support vector machine (SVM) kernel radial basis function, dan k-nearest neighbors (KNN). Data diolah menggunakan metode Mahalanobis distance untuk penanganan pencilan, min-max scaler untuk transformasi data, dan hyperparameters tuning untuk mengoptimalkan kinerja model. Berdasarkan hasil penelitian, SVM kernel polynomial menunjukkan kinerja terbaik dari segi accuracy, precision, recall, dan f1-score. Namun, dari sisi efisiensi, KNN menjadi yang paling unggul. Sementara itu, SVM kernel linear menunjukkan keseimbangan terbaik antara kinerja dan efisiensi sehingga dapat dipertimbangkan sebagai alternatif yang optimal dalam diagnosis anemia.
dc.description.abstractAnemia is an health problem characterized by a decrease in hemoglobin levels below normal limits. A better approach in the diagnosis of anemia is needed to ensure proper treatment. This study aims to compare the performance of several classification models in machine learning to diagnose anemia using data with gender, hemoglobin, hematocrit, MCH, MCHC, MCV, RBC, and anemia variables. Four models are used, namely support vector machine (SVM) linear kernel, support vector machine (SVM) polynomial kernel, support vector machine (SVM) radial basis function kernel, and k-nearest neighbors (KNN). Data are processed using the Mahalanobis distance method for outlier handling, min-max scaler for data transformation, and hyperparameters tuning to optimize model performance. Based on the results, SVM kernel polynomial showed the best performance in terms of accuracy, precision, recall, and f1-score. However, in terms of efficiency, KNN is the most superior. Meanwhile, linear kernel SVM shows the best balance between performance and efficiency so that it can be considered as an optimal alternative in anemia diagnosis.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePerbandingan Kinerja Model Klasifikasi Support Vector Machine dan K-Nearest Neighbors dalam Mendiagnosis Anemiaid
dc.title.alternativePerformance Comparison of Support Vector Machine and K-Nearest Neighbors Classification Models in Diagnosing Anemia
dc.typeSkripsi
dc.subject.keywordanemiaid
dc.subject.keywordK-nearest neighborid
dc.subject.keywordmachine learningid
dc.subject.keywordSupport Vector Machines (SVM)id


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record