Perbandingan Kinerja Model Klasifikasi Support Vector Machine dan K-Nearest Neighbors dalam Mendiagnosis Anemia
Date
2024Author
Al-Fariz, Buya
Julianto, Mochamad Tito
Mangku, I Wayan
Metadata
Show full item recordAbstract
Anemia merupakan masalah kesehatan yang ditandai dengan penurunan
kadar hemoglobin di bawah batas normal. Pendekatan yang lebih baik dalam
diagnosis anemia diperlukan untuk memastikan penanganan yang tepat. Penelitian
ini bertujuan membandingkan kinerja beberapa model klasifikasi pada machine
learning untuk mendiagnosis anemia menggunakan data dengan variabel gender,
hemoglobin, hematocrit, MCH, MCHC, MCV, RBC, dan variabel anemia. Empat
model yang digunakan, yaitu support vector machine (SVM) kernel linear, support
vector machine (SVM) kernel polynomial, support vector machine (SVM) kernel
radial basis function, dan k-nearest neighbors (KNN). Data diolah menggunakan
metode Mahalanobis distance untuk penanganan pencilan, min-max scaler untuk
transformasi data, dan hyperparameters tuning untuk mengoptimalkan kinerja
model. Berdasarkan hasil penelitian, SVM kernel polynomial menunjukkan kinerja
terbaik dari segi accuracy, precision, recall, dan f1-score. Namun, dari sisi
efisiensi, KNN menjadi yang paling unggul. Sementara itu, SVM kernel linear
menunjukkan keseimbangan terbaik antara kinerja dan efisiensi sehingga dapat
dipertimbangkan sebagai alternatif yang optimal dalam diagnosis anemia. Anemia is an health problem characterized by a decrease in hemoglobin
levels below normal limits. A better approach in the diagnosis of anemia is needed
to ensure proper treatment. This study aims to compare the performance of several
classification models in machine learning to diagnose anemia using data with
gender, hemoglobin, hematocrit, MCH, MCHC, MCV, RBC, and anemia variables.
Four models are used, namely support vector machine (SVM) linear kernel, support
vector machine (SVM) polynomial kernel, support vector machine (SVM) radial
basis function kernel, and k-nearest neighbors (KNN). Data are processed using the
Mahalanobis distance method for outlier handling, min-max scaler for data
transformation, and hyperparameters tuning to optimize model performance. Based
on the results, SVM kernel polynomial showed the best performance in terms of
accuracy, precision, recall, and f1-score. However, in terms of efficiency, KNN is
the most superior. Meanwhile, linear kernel SVM shows the best balance between
performance and efficiency so that it can be considered as an optimal alternative in
anemia diagnosis.
Collections
- UT - Mathematics [1487]
