Show simple item record

dc.contributor.advisorArdana, Ngakan Komang Kutha
dc.contributor.advisorSumarno, Hadi
dc.contributor.authorPrastiwi, Tania Chandra
dc.date.accessioned2024-08-20T02:11:00Z
dc.date.available2024-08-20T02:11:00Z
dc.date.issued2024
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/157927
dc.description.abstractData multivariat seringkali mengandung pencilan yang dapat mengganggu hasil analisis. Algoritma Detect Deviating Cells (DDC) digunakan untuk mengidentifikasi dan menangani pencilan pada tingkatan sel pada gugus data, menggantinya dengan nilai imputasi (X_imp) sehingga menciptakan gugus data yang disempurnakan untuk regresi Partial Least Squares (PLS) berikutnya. Akurasi model dievaluasi menggunakan Root Mean Square Error (RMSE) dan metrik R-squared adjusted (R^2_adj). Hasil penelitian menunjukkan bahwa algoritma DDC pada regresi PLS menghasilkan model yang lebih akurat dalam menduga nilai sebenarnya, terutama pada data yang mengandung pencilan dan multikolinearitas. Model ini juga mampu menjelaskan variabilitas data yang lebih baik dibandingkan dengan metode regresi Ordinary Least Squares (OLS).
dc.description.abstractMultivariate data often contains outliers that can interfere the analysis results. The Detect Deviating Cells (DDC) algorithm was used to identify and handle cell-level outliers in the data clusters, replacing them with imputed values (X_imp) thus creating enhanced data clusters for subsequent Partial Least Squares (PLS) regression. Model accuracy was evaluated using Root Mean Square Error (RMSE) and adjusted R-squared metric (R^2_adj). The results show that the DDC algorithm in PLS regression produces a more accurate model in predicting the true value, especially in data containing outliers and multicollinearity. This model is also able to explain data variability better than the Ordinary Least Squares (OLS) regression method.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePenggunaan Algoritma Detect Deviating Cells (DDC) untuk Mengatasi Pencilan Sel pada Regresi Partial Least Squaresid
dc.title.alternativeApplication of Detect Deviating Cells (DDC) Algorithm to Handle Cellwise Outliers in Partial Least Squares Regression
dc.typeSkripsi
dc.subject.keyworddetect deviating cellsid
dc.subject.keywordmultikolinearitasid
dc.subject.keywordpencilan selid
dc.subject.keywordpartial least squaresid
dc.subject.keywordcellwise outliersid
dc.subject.keywordmulticollinearityid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record