View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penggunaan Algoritma Detect Deviating Cells (DDC) untuk Mengatasi Pencilan Sel pada Regresi Partial Least Squares

      Thumbnail
      View/Open
      Cover (808.5Kb)
      Fulltext (2.644Mb)
      Lampiran (936.4Kb)
      Date
      2024
      Author
      Prastiwi, Tania Chandra
      Ardana, Ngakan Komang Kutha
      Sumarno, Hadi
      Metadata
      Show full item record
      Abstract
      Data multivariat seringkali mengandung pencilan yang dapat mengganggu hasil analisis. Algoritma Detect Deviating Cells (DDC) digunakan untuk mengidentifikasi dan menangani pencilan pada tingkatan sel pada gugus data, menggantinya dengan nilai imputasi (X_imp) sehingga menciptakan gugus data yang disempurnakan untuk regresi Partial Least Squares (PLS) berikutnya. Akurasi model dievaluasi menggunakan Root Mean Square Error (RMSE) dan metrik R-squared adjusted (R^2_adj). Hasil penelitian menunjukkan bahwa algoritma DDC pada regresi PLS menghasilkan model yang lebih akurat dalam menduga nilai sebenarnya, terutama pada data yang mengandung pencilan dan multikolinearitas. Model ini juga mampu menjelaskan variabilitas data yang lebih baik dibandingkan dengan metode regresi Ordinary Least Squares (OLS).
       
      Multivariate data often contains outliers that can interfere the analysis results. The Detect Deviating Cells (DDC) algorithm was used to identify and handle cell-level outliers in the data clusters, replacing them with imputed values (X_imp) thus creating enhanced data clusters for subsequent Partial Least Squares (PLS) regression. Model accuracy was evaluated using Root Mean Square Error (RMSE) and adjusted R-squared metric (R^2_adj). The results show that the DDC algorithm in PLS regression produces a more accurate model in predicting the true value, especially in data containing outliers and multicollinearity. This model is also able to explain data variability better than the Ordinary Least Squares (OLS) regression method.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/157927
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository