View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Civil and Environmental Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Civil and Environmental Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Model Identifikasi Air - Lingkungan - Tanaman untuk Budidaya Padi Sawah dengan Perlakuan Fine Bubble Technology

      Thumbnail
      View/Open
      Cover (256.6Kb)
      Fulltext (1.171Mb)
      Lampiran (1.194Mb)
      Date
      2024
      Author
      Alfarisy, Derys Andra
      Arif, Chusnul
      Purwanto, Yohanes Aris
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan untuk mengembangkan model identifikasi hubungan antara tinggi muka air, oksigen terlarut, evapotranspirasi tanaman dengan produktivitas padi menggunakan model Jaringan Saraf Tiruan (JST). JST digunakan untuk membantu memodelkan kompleksitas pengaruh faktor-faktor lingkungan tersebut sebagai input terhadap produktivitas padi sebagai output. Penelitian ini dilakukan di Kinjiro Farm, Bogor pada area lahan terbuka dengan menggunakan 4 perlakuan yaitu TA 1 dipasang fine buble generator dengan set point 0 – 7 cm, TA 2 menggunakan sistem irigasi permukaan dengan set point 4 – 7 cm, TA 3 menggunakan sistem irigasi bawah permukaan dengan set point -5 – 0 cm, dan TA 4 menggunakan sistem permukaan dengan set point 4 cm. Pemodelan JST menunjukkan terdapat hubungan yang kuat antara parameter input yaitu tinggi air, tinggi tanaman hari sebelumnya, oksigen terlarut, dan evapotranspirasi aktual dengan parameter output yaitu tinggi tanaman yang ditunjukkan melalui koefisien determinasi R2 bernilai 0,977. Hasil ini menunjukkan pemodelan JST dapat dijadikan acuan untuk melakukan pendugaan pertumbuhan tanaman berdasarkan faktor lingkungan dan air.
       
      This research aims to develop a model for identifying the relationship between water level, dissolved oxygen, plant evapotranspiration and rice productivity using the Artificial Neural Network (ANN) model. ANN is used to help model the complexity of the influence of these environmental factors as input on rice productivity as output. This research was conducted at Kinjiro Farm, Bogor in an open land area using 4 treatments, namely TA 1 installed fine buble generator with set point 0 – 7 cm, TA 2 uses a surface irrigation system with set point 4 – 7 cm, TA 3 uses a subsurface irrigation system with set point -5 – 0 cm, and TA 4 uses a surface system with set point 4 cm. ANN modeling shows that there is a strong relationship between the parameters input namely water height, plant height the previous day, dissolved oxygen, and actual evapotranspiration with parameters output namely plant height which is shown through the coefficient of determination R2 worth 0.977. These results show that ANN modeling can be used as a reference for estimating plant growth based on environmental and water factors.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/155341
      Collections
      • UT - Civil and Environmental Engineering [1042]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository