View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Komparasi Kinerja Algoritma XGBoost, CatBoost, dan LightGBM dalam Klasifikasi Produktivitas Sawit Rakyat di Provinsi Riau

      Thumbnail
      View/Open
      Cover (724.4Kb)
      Fullteks (7.294Mb)
      Lampiran (569.2Kb)
      Date
      2024
      Author
      Arss, Muhammad Nachnoer Novatron Fitra
      Afendi, Farit Mochamad
      Sulvianti, Itasia Dina
      Metadata
      Show full item record
      Abstract
      Perkebunan sawit di Provinsi Riau memegang peran sentral dalam industri perkebunan nasional. Faktor utama yang memengaruhi tingkat produktivitas sawit yaitu perbedaan karakteristik iklim tiap wilayah dan variabilitas iklim. Studi ini bertujuan membandingkan algoritma machine learning yaitu XGBoost, CatBoost, dan LightGBM yang digunakan dalam pemodelan iklim untuk mengklasifikasikan tingkat produktivitas sawit rakyat di Provinsi Riau. Data yang digunakan merupakan data Statistik Perkebunan Indonesia 1990-2022 dan data iklim yang didapatkan dari Climate Hazards Group Precipitation with Station (CHIRPS). Pemodelan dievaluasi melalui tiga skenario partisi model terbaik hasil hyperparameter tuning. Hasil penelitian model klasifikasi produktivitas sawit rakyat di Provinsi Riau menunjukkan bahwa CatBoost memiliki AUC uji terbaik yaitu sebesar 0,857 pada skenario partisi 75% data latih dan 25% data uji. Kombinasi hyperparameter yang digunakan yaitu ntree = 100, learning rate = 0,03, dan max-depth = 9. CatBoost juga menunjukkan konsistensi terbaik dalam menghindari overfitting untuk tiap skenario yang diuji. LightGBM dan XGBoost memiliki performa yang lebih rendah karena cukup sensitif terhadap data berdimensi kecil dalam pelatihan. Hal ini menyebabkan inkonsistensi kinerja algoritma ketika diterapkan pada proporsi data latih dan data uji yang berbeda.
       
      Oil palm plantations in Riau Province play a central role in the national plantation industry. The main factors affecting oil palm productivity are the differences in climate characteristics across regions and climate variability. This study aims to compare the machine learning algorithms XGBoost, CatBoost, and LightGBM, used in climate modeling to classify the productivity levels of smallholder oil palm plantations in Riau Province. The data used includes Indonesian Plantation Statistics from 1990 to 2022 and climate data from the Climate Hazards Group Precipitation with Station (CHIRPS). The modeling was evaluated through three partitioning scenarios of the best models resulting from hyperparameter tuning. The results showed that CatBoost had the best test AUC of 0.857 in the scenario with 75% training data and 25% test data. The hyperparameters used were ntree = 100, learning rate = 0.03, and max-depth = 9. CatBoost also demonstrated the best consistency in avoiding overfitting across all tested scenarios. LightGBM and XGBoost performed lower due to their sensitivity to small-dimensional data during training, leading to inconsistent performance when applied to different proportions of training and test data.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/154592
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository