View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Spatio-Temporal Menggunakan Generalized LASSO pada Kasus Stunting di Indonesia

      Thumbnail
      View/Open
      Cover (398.1Kb)
      Fulltext (4.506Mb)
      Lampiran (347.3Kb)
      Date
      2024
      Author
      Juhanda, Alfidhia Rahman Nasa
      Rahardiantoro, Septian
      Soleh, Agus Mohamad
      Metadata
      Show full item record
      Abstract
      Penelitian ini menganalisis prevalensi stunting di 34 provinsi di Indonesia dari tahun 2020 hingga 2022 menggunakan pendekatan spatio-temporal dengan model generalized Least Absolute Shrinkage and Selection Operator (LASSO), yang mempertimbangkan kedekatan geografis dan temporal antar wilayah. Tujuan penelitian ini adalah untuk mengidentifikasi faktor-faktor yang berpengaruh terhadap angka stunting. Model dengan matriks penalti D berdasarkan kedekatan queen dan parameter λ = 0,055 menunjukkan adanya pengelompokan pengaruh terjadi pada provinsi di dalam pulau yang sama. Analisis menunjukkan Berat Badan Lahir Rendah (BBLR), kurangnya akses terhadap pelayanan kesehatan, dan tidak menyelesaikan studi SMA sebagai faktor paling berpengaruh terhadap prevalensi stunting. Generalized LASSO dalam penelitian ini mampu mengidentifikasi faktor-faktor yang berpengaruh terhadap angka stunting.
       
      This study analyzes the prevalence of stunting in 34 provinces of Indonesia from 2020 to 2022 using a spatio-temporal approach with the Generalized Least Absolute Shrinkage and Se lection Operator (LASSO) model, which considers the geographical and temporal proximity between regions. The aim of this research is to identify the factors influencing stunting rates. The model with a penalty matrix D based on queen contiguity and a parameter λ = 0.055 indicates that the clustering of influences occurs in provinces within the same island. The analysis shows that Low Birth Weight, lack of access to healthcare services, and not completing high school are the most influential factors affecting the prevalence of stunting. The Generalized LASSO in this study successfully identifies the factors influencing stunting rates.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/152770
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository