Show simple item record

dc.contributor.advisorNawangsih, Abdjad Asih
dc.contributor.advisorWahyudi, Aris Tri
dc.contributor.advisorWiyono, Suryo
dc.contributor.advisorMunif, Abdul
dc.contributor.authorWati, Cheppy
dc.date.accessioned2024-05-19T23:57:47Z
dc.date.available2024-05-19T23:57:47Z
dc.date.issued2024-05-15
dc.identifier.citationAbubacker MN, Deepalakshmi T. 2013. In vitro antifungal potentials of bioactive compound methyl ester of hexadecanoic acid isolated from Annona muricata Linn. (Annonaceae) leaves. Biosciences Biotechnology Research Asia. 10(2): 879-884. doi: 10.13005/bbra/1211. Adegboye MF, Babalola OO. 2013. Actinomycetes: a yet inexhaustive source of bioactive secondary metabolites. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, pp 786–795. Anandan R, Dharumadurai D, Manogaran GP. 2016. An introduction to actinobacteria. In: Dhanasekaran D, Jiang Y (eds.). Actinobacteriabasics and biotechnological applications. Intech Open Limited, London, UK. Doi: 10.5772/62329. Aryanta IWR. 2019. Bawang merah dan manfaatnya bagi kesehatan. E-Jurnal Widya Kesehatan.1(1). Abd-Elsalam KA, Aly IN, Abdel-Satar MA, Khalil MS, Verreet JA. 2003. PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. Afr. J. Biotechnol. 2(4):82-85. doi:10.5897/AJB2003.000- 1016. Adiyoga W. 2020. Signifikasi dan potensi produksi bawang merah di Indonesia. Badan Penelitian dan Pengembangan Pertanian. Jakarta. Agrios GN. 2005. Plant Pathology Fifth Edition. California: Elsivier Academic Press. Alblooshi AA, Purayil GP, Saeed EE, Ramadan GA, Tariq S, Altaee AS, El-Tarabily KA, Qamar SFA. 2021. Biocontrol potential of endophytic actinobacteria against Fusarium solani, the causal agent of sudden decline syndrome on date palm in the UAE. J. Fungi. 8(8). Doi: 10.3390/jof8010008. Ali SA, Abdelmoaty HS, Ramadan HH, Salman YB. 2023. Extraction and Chemical identification of certain antifungal compounds from the pigmented fungus Epicoccum nigrum against phytopathogenic fungus Fusarium solani. Reseach square. doi: 10.21203/rs.3.rs-2454076/v1. Allen NS. 1983. Degradation and Stabilisation of Polyolefins. England: Applied Science Publishers ltd. Al-Mutarrafi M, Elsharawy NT, Al-Ayafi A, Almatrafi A, Abdelkader H. 2019. Molecular identification of some fungi associated with soft dates (Phoenix dactylifera L.) in Saudi Arabia. Adv. Med. Plant Res. 7(4): 97-106. Andrews JH, Harris RF. 2000. The ecology and biogeography of microorganisms on plant surfaces. Ann Rev Phytopathol. 38:145-180. Anwar S, Ali B, Sajid I. 2016. Screening of rhizospheric actinomycetes for various in-vitro and In-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front. Microbiol. 7:1334. Doi: 10.3389/fmicb.2016.01334. Aquar L, Boukelloul I, Benadjila A. 2020. Identification of antagonistic Streptomyces strains isolated from Algerian Saharan soils and their plant growth-promoting properties. Biodiversitas. 21(12): 5672-5683. doi: 10.13057/biodiv/d211212. Aryanta IWR. 2019. Bawang merah dan manfaatnya bagi Kesehatan. E-Jurnal Widya Kesehatan. 1(1). [diakses tanggal 31 Januari 2024]. Astuty E. 2017. Isolasi dan Karakterisasi Morfologi Aktinomiset Indigenus Asal Tanah Gambut. Jurnal Ilmu Alam dan Lingkungan. 8(16): 7-15. Awan K, Hamzah A. 2020. Pertumbuhan dan Produksi Bawang Merah (Allium ascalonicum L.) Varietas Lokananta pada berbagai Ukuran Umbi G0. JOM Faperta. 7(1). Awan ZA, Shoaib A, Schenk PM, Ahmad A, Alansi S, Paray BA. 2023. Antifungal potential of volatiles produced by Bacillus subtilis BS-01 against Alternaria solani in Solanum lycopersicum. Front. Plant Sci. 1. 13:1089562. doi: 10.3389/fpls.2022.1089562. Azman AS, Mawang CI, Abubakar S. 2018. Bacterial pigments: the bioactivities and as an alternative for therapeutic applications. Nat Prod Commun. 13(12):1747–1754. Doi: 10.1177/1934578x1801301240. Badan Pusat Statistik. 2023. Distribusi perdagangan komoditas bawang merah di Indonesia. BPR RI. Jakarta. Badan Pusat Statistik. 2021. Produktivitas Bawang Merah Menurut Provinsi, Tahun 2014-2018 [internet]. [diunduh 20 Maret 2020]. Tersedia pada https://www.bps.go.id. Badan Pusat Statistik. 2017. Perkembangan indeks harga konsumen/inflasi November 2016 inflasi 0,47 persen [internet]. [diunduh 20 Maret 2020]. Tersedia pada https://www.bps.go.id. Balint P, Kurti. 2019. The plant hypersensitive response: concepts, control, and consequences. Mol Plant Pathol. 20(8): 1163-1178. Doi: 10.1111/mpp.12821 Barretto DA, Vootla SK. 2018. GC-MS analysis of bioactive compounds and antimicrobial activity of Cryptococcus rajasthanensis ky627764 isolated from Bombyx mori gut microflora. Int. J. Adv. Res. 6(3), 525-538. Doi: :10.21474/IJAR01/6700. Barka EA, Parul V, Lisa S, Nathalie GV, Cedric J, Hans PK, Christophe C, Yder O, Gilles PVW. 2016. Taxonomy, physiology, and natural products of actinobacteria’, microbiology and molecular biology reviews. Microbiol Mol Biol Rev. 80(1):1-43. Doi: 10.1128/MMBR.00019-15. Bernal MG, Campa-Cordova AI, Saucedo PE, Gonzales MC, Marrero RM, Suastegui M. 2015. Isolation and in vitro Selection of Actinomycetes Strains as Potential Probiotics for Aquaculture. Veter World. 8(2): 170-176. Bobek J, Filipová E, Bergman N, Cihˇák M, Petˇríˇcek M, Lara AC, Kristufek V, Megyes M, Wurzer T, Chroˇnáková A, Petˇríˇcková K. 2022. Polyenic antibiotics and other antifungal compounds produced by hemolytic Streptomyces species. Int. J. Mol. Sci. 23(23):15045. Doi: 10.3390/ijms232315045. Bonaldi M, Konova A, Sarrachi M, Sardi P, Cortesi P. 2014. Streptomycetes as biologycal control agens against Basal Drop. Proc. VIIIth IS on Chemical and Non-Chemical Soil and Substrate Disinfestation. Acta Hort. 1044:313-318. Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E. 2022. Bacteria as biological control agents of plant diseases. Microorganisms 10:1759. doi: 10.3390/microorganisms10091759. Boykova I, Yuzikhin O, Novikova I, Ulianich P, Eliseev I, Shaposhnikov A, Yakimov A, Belimov A. 2023. Strain Streptomyces sp. P-56 produces nonactin and possesses insecticidal, acaricidal, antimicrobial and plant growth-promoting traits. Microorganisms.11:764. Doi: 10.3390/microorganisms11030764. Budi MB, Giyanto, Tondok ET. 2022. Isolation of actinomycetes from peatland to suppress the growth of Ganoderma boninense the causal agent of basal stem rot disease in oil palm. Biodiversitas. 23(11): 5914-5922. DOI: 10.13057/biodiv/d231145. Cao P, Li C, Wang H, Yu Z, Xu X, Wang X, Zhao J, Xiang W. 2020. Community Structures and antifungal activity of root-associated endophytic actinobacteria in healthy and diseased cucumber plants and Streptomyces sp. HAAG3-15 as a promising biocontrol agent. Microorganisms. 8:236. Doi:10.3390/microorganisms8020236. Carretero R, Bancal MO, & Miralles DJ. 2011. Effect of leaf rust (Puccinia triticine) on photosynthesis and related processes of leaves in wheat crop grown at two contrasting sites and with different nitrogen level. Eur. J. Agron. 35: 237–246. https://doi.org/10.1016/j.eja.2011.06.007. Chakraborty S, Ghosh M, Chakraborti S, Jana S, Sen KK, Kokare C, Zhang L, 2015. Biosurfactant Produced from Actinomycetes nocardiopsis A17: Characteri- zation and Its Biological Evaluation. Int. J. Biol. Macromol, 04: 068. Chethana BS, Ganeshan G, Rao AS, Bellishree K. 2018. Morphological and molecular characterization of Alternaria isolates causing purple blotch disease of onion. Int.J.Curr.Microbiol.App.Sci. 7(4): 3478-3493. Doi: 10.20546/ijcmas.2018.704.394. Dar AA, Sharma S , Mahajan R, Mushtaq M, Salathia A, Ahamad S, Sharma JP. 2020. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches. J. Integr. Agric. 19(12): 3013–3024. Doi: 10.1016/S2095-3119(20)63285-3. Delina Y, Okalia D, Alatas A. 2019. Pengaruh pemberian dolomit dan pupuk kcl terhadap pertumbuhan dan produksi tanamanbawang merah (Allium ascalanicum. L.). Jurnal Green Swarnadwipa. 1(1): 39-47. Devi, N.N., Singh, M.S., 2013. GC-MS analysis of metabolites from endophytic fungus Colletotrichum gloeosporioides isolated from Phlogacanthus thyrsiflorus Nees. International. J. Pharm. Sci. Rev. Res. 23, 392-395. Dharmaputra OS, Listiyowati S, Nurwulansari IZ. 2018. Keragaman Cendawan Pascapanen pada Umbi Bawang Merah Varietas Bima Brebes. Jurnal Fitopatologi. 14(5): 175–182. Doi: 10.14692/jfi.14.5.175. Djebaili R, Pellegrini M, Bernardi M, Smati M, Kitouni M, Gallo MD. 2021. Biocontrol Activity of Actinomycetes Strains against Fungal and Bacterial Pathogens of Solanum lycopersicum L. and Daucus carota L.: In Vitro and In Planta Antagonistic Activity. Biol. Life Sci. 4(27). Doi: 10.3390/ IECPS2020-08863. Djebaili R, Pellegrini M, Bernardi M, Smati M, Kitouni M, Gallo MD. 2021. Biocontrol Activity of Actinomycetes Strains against Fungal and Bacterial Pathogens of Solanum lycopersicum L. and Daucus carota L.: In Vitro and In Planta Antagonistic Activity. Biol. Life Sci. 4(27). Doi: 10.3390/ IECPS2020-08863. Djamaluddin RR, Sukmawaty E, Masriany, Hafsan. 2022. Identifikasi gejala penyakit dan cendawan patogen tanaman bawang merah (Allium ascolonicum) di Kecamatan Buntu Batu Kabupaten Enrekang. Teknosains: Media Informasi Sains dan Teknologi. 16(1):81-92. Doi: 10.24252/teknosains.v16i1.26027. Fadhilah QG, Santoso I, Yasman. 2021. The antagonistic activity of marine actinomycetes from mangrove ecosystem against phytopathogenic fungi Colletotrichum sp. KA. Biodiversitas. 22(2): 640-647. Doi: 10.13057/biodiv/d220216. Fardiyanti R, Kasrina, Bustaman H. 2021. Ragam jenis Streptomyces sp. pada rizosfer tanaman suku Liliacea di kawasan Desa Sumber Bening, Rejang Lebong, Bengkulu. Konservasi Hayati. 17(1): 29-34. Doi: 10.33369/hayati.v17i1.14731. Fatimah, Suroiyah F, Solikha N, Rahayuningtyas ND, Surtiningsih T, Nurhariyati T, Ni’matuzahroh, Affandi M, Geraldi A, Thontowi A. 2022. Antimicrobial activity of Actinomycetes isolated from mangrove soil in Tuban, Indonesia. Biodiversitas 23: 2957-2965. Doi: 10.13057/biodiv/d230622. Fatmawati U. 2019. Aktinomiset Rizozfer sebagai pemacu Tumbuh dan Pengendali Penyakit Rebah Kecambah pada Kedelai. Disertasi. Sekolah Pascasarjana Instirut Pertanian Bogor. Bogor. Fibrianty, Afriani R, Pujiastuti E, Purwaningsih. 2022. Perbandingan produksi bawang merah varietas bima brebes pada dua jenis tanah dengan perbedaan tingkat kemasaman. Prosiding Seminar Nasional Fakultas Pertanian dan Perikanan. Yogyakarta. Doi: https://doi.org/10.30595/pspfs.v4i.476. Firmansyah A, Rahayu W, Liyana T. 2016. Paket pemupukan wortel pada tanah lempung liat berpasir dataran rendah di palangkaraya. J. Berita Biologi. 17(2):103-114. Francis M, Chacha M, Ndakidemi PA, Mbega ER. 2021. Antifungal effects against Phaeoisariopsis personata under greenhouse conditions and phytochemical analysis of Jatropha curcas leaf extracts. Intl J Agric Biol. 26(2): 231‒240, doi: 10.17957/IJAB/15.1829. Franco-Correa M, Quintana A. Duque C. Suarez C, Rodriquez MX, Barea J M. 2010. Evaluation of actinomiset strains for key traits related with plant growth promotion and micorhiza helping activities. Appl Soil Ecol. 45:209-217. Gao F, Wu Y, Wang M. 2014. Identification and antifungal activity of an actinomycete strain against Alternaria spp. Span. J. Agric. Res. 12(4): 1158-1165. George M, Anjumol A, George G, Hatha M. 2012. Distribution and Bioactive potential of soil actinomisetes from different ecological habitats. Afr J Microbiol Res. 6(10): 2265-2271. Ghanem GAM, Gebily DHS, Ragab MM, Ali AM, Soliman NEK, and El Moity A. 2022. Efficacy of antifungal substances of three Streptomyces spp. against diferent plant pathogenic fungi. Egypt. J. Biol. Pest Control) 32:112. Doi: 10.1186/s41938-022-00612-9. Gomaa EZ. 2013. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz. Arch. Biol. Technol. 56: 259-268. Doi: 10.1590/S1516-89132013000200011. Gong Y, Liu J, Xu M, Zhang C, Gao J, Li C, Xing K, Qin S. 2022. Antifungal volatile organic compounds from Streptomyces Setonii wy228 control black spot disease of sweet potato. Appl. Environ. Microbiol. 88(6). Doi: 10.1128/aem.02317-21. Gopalakkrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandep D. 2011. Evaluation of actinomisete isolates obtained from herbal vermicompost for biologicalcontrol of Fusarium wilt of chickpea. Crop protect. 30:1070-1078. Gupta P, Imchen M, Kumavath R. 2022. Exploration and characterization of melanin pigment produced by actinomycetes. In: Dharumadurai D, editor. Methods in actinobacteriology. Springer protocols handbooks. 671–681. Doi: 10.1007/978-1-0716-1728-1_99. Hadisutrisno B, Sudarmadji, Subandiyah S, Priyatmojo A. 1996. Peranan faktor cuaca terhadap infeksi dan perkembangan penyakit bercak ungu pada bawang merah. Indon. J. Plant Prot. 1(1):56–64. Hassanshahian M, 2014. Isolation and Characterization of Biosurfactant Producing Bacteria from Persian Gulf (Bushehr provenance). Mar. Pollut. Bull. 86: 361- 366. Helal IM. 2017. Control of Damping-off diseases in some plant using enviromentally biocide. Pak J Bot. 49(1):361-370. Hersanti, Sudarjat, Damayanti A. 2019. Kemampuan Bacillus subtilis dan Lysinibacillus sp. dalam Silika Nano dan Serat Karbon untuk Menginduksi Ketahanan Bawang Merah terhadap Penyakit Bercak Ungu (Alternaria porri (Ell.) Cif). Jurnal Agrikultura. 30(1): 8-16. doi: 10.24198/agrikultura.v30i1.22622. Hidayat Y, Susanto AN, Wawan S, Ramadhani M. 2014. Keragaman fisik dan morfologi bawang merah Topo Maluku Utara. Prosiding Seminar Nasional Sumber Daya Genetic Pertanian.293-298. Hutapea RF, Nasution Z, Razali. 2015. Lokasi Penanaman Bawang Merah Lokal Samosir Berdasarkan Ketinggian Tempat di Daerah Tangkapan Air Danau Toba. Jurnal Agroekoteknologi. 4(1): 1713 – 1720. Janatiningrum I, Lestari Y. 2022. Enzyme production, antibacterial and antifungal activities of actinobacteria isolated from Ficus deltoidea rhizosphere. Biodiversitas. 23(4): 1950-1957. Jauh-Hsun C, Vinh T, Davies JK, Figdor D. 2002. Molecular approaches to the differentiation of Actinomycetes spesies. Mol. Oral Microbiol. 14: 250-256. Jimtha JC, Jishma P, Arathy GB, Anisha C, Radhakrishnan EK. 2016. Identification of plant growth promoting Rhizosphere Bacillus sp. WG4 antagonistic to Pythium myriotylum and its enhanced antifungal effect in association with Trichoderma. Journal of Soil Science and Plant Nutrition. 16 (3): 578-590. doi: 10.4067/S0718-95162016005000026. Kaari M, Joseph J, Manikkam R, Sreenivasan A, Venugopal G, Alexander B, Krishnan S. 2022. Biocontrol Streptomyces Induces Resistance to Bacterial Wilt by Increasing Defense-Related Enzyme Activity in Solanum melongena L. Curr Microbiol. 79(5):146. doi: 10.1007/s00284-022-02832-6. Kadwati, Hidayat SH. 2015. Deteksi virus utama bawang merah dan bawang putih dari daerah Jawa Barat dan Jawa Tengah. Jurnal Fitopatologi Indonesia. 11(4): 121–127. Doi: 10.14692/jfi.11.4.121. Khan S, Srivastava S, Karnwal A, Malik T. 2023. Streptomyces as a promising biological control agents for plant pathogens. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1285543. Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. 2018. An antibiotic agent pyrrolo[1,2-: A] pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus . RSC Adv. 8, 17837–17846. doi: 10.1039/c8ra00820e. Knief C, Delmotte N, Chaffron S, Stark M, Innerrebner G, Wassmann R, Mering C, Volhort JA. 2011. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. In Soc Microb Ecol. 11:1-13. Krieg JG, Holt NR. 1994. Bergey's manual of determinative bacteriology. Springer. New york. London. Krzesniak KJ, Mateusiak AR, Guspiel A, Ziemska J, Solecka J. 2018. Secondary metabolites of actinomycetes and their antibacterial, antifungal, and antiviral properties. Pol. J. Microbiol. 67(3):259–272. doi:10.21307/pjm-2018-048. Kumari N, Menghani E, Mithal R. 2019. Bioactive compounds characterization and antibacterial potentials of actinomycetes isolated from rhizospheric soil. J Sci Ind Res. 78:793-798. Kurniati DI, Ardiningsih P, Nofiani R. 2019. Isolasi dan aktivitas antibakteri actinomycetes berasosiasi dengan koral. Jurnal Kimia Khatulistiwa. 8(2): 46-51. Kuster E, Williams S. 1964. Production of hydrogen sulphide by Streptomyces and methods for its detection. J Appl Microbiol. 12: 46- 52. Doi: 10.1128/am.12.1.46-52.1964. LeBlanc N. 2022. Bacteria in the genus Streptomyces are effective biological control agents for management of fungal plant pathogens: A meta-analysis. Biocontrol. 67:111–121. doi: 10.1007/s10526-021-10123-5. Lechevalier M, Bievre CD, Lechevalier H. 1980. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem. Syst. Ecol. 5: 249-260. Li S, Yang B, Tan G, Ouyang L, Qiu S, Wang2 W, Xiang W, Zhang L. 2021. Polyketide pesticides from actinomycetes. Elsevier. 69:299–307. Li Q, Chen X, Jiang C. 2016. Morphological identification of actinobacteria. Dalam Actinobacteria: Basic and Biotechnological Applications. ed D. Dhanasekaran and Y. Jiang. UK: InTech:59-81. Ma’ruf M, Nelvia N, Silvina F. 2019. Pengaruh pemberian pupuk hayati dan pupuk N, P, K terhadap pertumbuhan dan produksi tanaman bawang merah (Allium ascalonicum L.). Jurnal Agroteknologi. 10(1):9-14. Doi: 10.23960/ja.v20i2.5086. Mariastuti HD, Listiyowati S, Wahyudi AT. 2018. Antifungal activity of soybean rhizosphere actinomycetes producing bioactive compounds against Fusarium oxysporum. Biodiversitas. 19 (6): 2127-2133. doi: 10.13057/biodiv/d190619. Marlitasari E, Sulistyowati L, Kusuma RR. 2016. Hubungan ketebalan lapisan epidermis daun terhadap infeksi jamur Alternaria porri penyebab penyakit bercak ungu pada empat varietas bawang merah. Jurnal HPT. 4(1): 8-16. Mesrian DK, Purwaningtyas WE, Astuti RI, Hasan AEZ, Wahyudi AT. 2021. Methanol pigment extracts derived from two marine actinomycetes exhibit antibacterial and antioxidant activities. Biodiversitas. 22 (10):4440–4447. Doi: 10.13057/biodiv/d221037. Mishra P, Mishra J, Dwivedi SK, Arora NK. 2020. Microbial enzymes in biocontrol of phytopathogens. Di dalam: Arora NK et al., editor. Microbial Enzymes: Roles and Applications In Industries, Microorganisms for Sustainability. Springer Nature Singapore Pte Ltd. Doi:10.1007/978-981-15-1710-5_10. Miyadoh S. 2001. Identification manual of actinomycetes. The Society for Actinomycetes of Japan. Japan. Monteiro FP, Ferreira LC, Pacheco LP,Souza PE. 2013. Antagonism of Bacillus subtilis against Sclerotinia sclerotiorum on Lactuca sativa. J Agric Sci. 5(4):214– 223. Doi: 10.5539/jas.v5n4p214. Naragani K, Mangamuri U, Muvva V, Poda S, Munaganti RK. 2016. Antimicrobial potential of streptomyces cheonanensis vuk-a from mangrove origin. International Journal of Pharmacy and Pharmaceutical Sciences. 8(3). 53-57. Narayana KJP, Vijayalakshmi M. 2009. Chitinase production by Streptomyces sp. Anu 6277. Braz. J. Microbiol. 40: 725-733. Nasanit R, Krataithong K, Tantirungkij M, Limtong S. 2015. Assessment of epiphytic yeast diversity in rice (Oryza sativa) phyllosphere in Thailand by a culture-independent approach. Antonie Van Leeuwenhoek. 107: 1475–1490. Doi: 10.1007/s10482-015-0442-2. Nataliya V. Balashova, Juan A. Crosby, Lourdes Al Ghofaily, Scott C. Kachlany. 2006. Leukotoxin Confers Beta-Hemolytic Activity to Actinobacillus actinomycetemcomitans. Infection and Immunity. 74(4): 2015–2021. Doi: :10.1128/IAI.74.4.2015–2021.2006. Ni HJ, Lv SY, Sheng YT, Wang H, Chu XH, Zhang HW. 2021. Optimization of fermentation conditions and medium compositions for the production of chrysomycin a by a marine-derived strain Streptomyces sp. 891. Prep. Biochem. Biotechnol. Doi: 10.1080/10826068.2021.188504 Noel ZA, Longley R, Benucci GMN, Trail F, Chilvers MI, Bonito G. 2022. Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management. Microb. Ecol. 2(19). Doi: 10.1038/s43705-022-00103-w. O’Brien D dan Lindow SE. 1989. Effect of plant species and environmental conditions on ephiphytic population size of Pseudomonas syringae and other bacteria. Phytopathology. 76:619-627. Ohike T, Maeda M, Matsukawa T, Okanami M, Kajiyama S, Ano T. 2018. In vitro and in vivo assay for assessment of the biological control potential of Streptomyces sp. KT. J. Plant Stud. 7(1):10-18. Doi: 10.5539/jps.v7n1p10. Oku H. 1994. Plant pathogenesis and disease control. London: Lewis Publ. Olanrewaju OS Babalola OO. 2018. Streptomyces: implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. Doi: 10.1007/s00253-018-09577-y. Oliveira J, Almeida PL, Sobral RG, Lourenço ND, Gaudêncio SP. 2022. Marine-Derived actinomycetes: biodegradation of plastics and formation of pha bioplastics—a circular bioeconomy approach. Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y. 2019. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biol Open. 8(2): 1-7. Doi: 10.1242/bio.035410. Park EJ, Jang HJ, Park CS, Lee SJ, Lee S, Kim KH, Yun BS, Lee S, Rho MC. 2020. Evaluation of nematicidal activity of Streptomyces yatensis kra-28 against Meloidogyne incognita. J. Microbiol. Biotechnol. 30(5): 700–707. doi: 10.4014/jmb.1908.08038. Parmar RS, Singh C. 2018. A comprehensive study of eco-friendly natural pigment and its applications. Biochem Biophys Rep. 13:22–26. Doi: 10.1016/j.bbrep.2017.11.002. Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A, 2017. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1. Front. Microbiol, 8: 193. Pathak CS, Singh A, Despande A, Sridar TT. 1986. Source of resistance to purple blotch in onion. Veg. Sci. 13:300-303. Patel JK, Madaan S, Archana G. 2018. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogenchallenged cereal crops. Microbiol. Res. 215:36. Doi: 10.1016/j.micres.2018.06.003. Permana DFW, Mustofa AH, Nuryani L, Kristiaputra PS, Alamudin Y. 2021. Budidaya bawang merah di Kabupaten Brebes. Jurnal Bina Desa. 3(2): 125-232. Piedra JL, Cabeza JG, Pico AAR, Cornejo MAS. 2019. Identification and in vitro antifungal evaluation of Streptomyces sp. of desert soil against Colletotrichum sp. Biotecnol. Apl. 36(2): 2201-2206. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Wees S, Bakker P. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75. Doi: 10.1146/annurev-phyto-082712-102340. Priya RU, Sataraddi AR, Kavitha TR. Studies on Cultural and Physiological Variability of Alternaria porri (Ellis) Cif. – A Causative of Purple Blotch of Onion (Allium cepa L.). Int.J.Curr.Microbiol.App.Sci. 7(8): 3284-3291. Doi: 10.20546/ijcmas.2018.708.350 Prashanthi K, Suryan S, Varalakshmi KN. 2015. In vitro anticancer property of yellow pigment from Streptomyces griseoaurantiacus JUACT 01. Brazilian Arch Biol Technol. 58(6):869–876. Doi: 10.1590/S1516-89132015060271. Pudjihartati E, Siswanto, Ilyas S, Sudarsono. 2006. Aktivitas enzim kitinase pada kacang tanah yang sehat dan yang terinfeksi Sclerotium rolfsii. Hayati. 13(2): 73-78. Doi: 10.1016/S1978-3019(16)30385-0. Qiu Z, Egidi E, Liu H, Kaur S, Singh BK. 2019. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37:107371. doi: 10.1016/j.biotechadv.2019. 03.010. Rante H, Alam G , Pakki E, Usmar U, Ali A. 2020. Identification and Antibacterial Activity of Actinomycetes Isolated From Medicinal Plant Andrographis paniculata Rhizosphere Soil. CJMB. 7(4). Ratnakomala S, Lisdiyanti P, Prayitno NR, Triana E, Lestari Y, Hatuti RD, Widyastuti Y, Otoguro M, Ando K, Sukara E. 2016. Diversity of actinomycetes from Eka Karya Botanical Garden, Bali. Biotropia. 23(1): 42-51. Resti Z, Habazar T, Putra DP, Nasrun. 2016. Aktivitas enzim peroksidase bawang merah yang diintroduksi dengan bakteri endofit dan tahan terhadap penyakit hawar daun bakteri (Xanthomonas axonopodis PV. allii). J. HPT Tropika. 16 (2): 131-137. Doi: 10.23960/j.hptt.216131-137. Risdiyanti RL, Rahmadhini N. Suryaminarsih P, Mujoko T. 2023. Study of Streptomyces spp. to control purple blotch disease caused by Alternaria porri in shallot plant. Journal of Plant Protection. 6(1): 56- 61. DOI: 10.24198/cropsaver.v6i1.43647. Saeed I, Khan SH, Rasheed A, Jahangir MM, Jabbar A, Shaheen HMF, Din W, Mazhar K. 2021. Assessment of Antagonistic Potential of Bacteria as Biocontrol agent against Alternaria Leaf Spot of Turnip. Pak. J. Phytopathol. 33 (02): 401-409. doi: 10.33866/phytopathol.033.02.0727401. Santoyo G. 2022. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv. Res. 40: 45–58. Doi: 10.1016/j.jare.2021.11.020. Sari M, Afiati F, Kusharyoto W. 2015. Potensi bakteri lumpur minyak sebagai penghasil biosurfaktan dan antimikroba. Pros Sem Nas Masy Biodiv Indon. 1(1): 85-88. Doi: 10.13057/psnmbi/m010113. Sari W, Inayah SA. 2020. Inventarisasi penyakit pada dua varietas lokal bawang merah (Allium ascalonicum L.) Bima Brebes Dan Trisula. Jurnal Pro-Stek. 2(2). Doi: 10.35194/prs.v2i2.1166. Schlechter RO, Miebach M, Emsermann MNPR. 2019. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19:57-65. Doi: 10.1016/j.jare.2019.03.003. Selim M, Abdelhamid SA, Mohamed SS. 2021. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. Doi: 10.1186/s43141-021-00156-9. Shahid M, Singh BN, Verma SM · Choudhary P, Das S, Chakdar H, Murugan K, Goswami SK, Saxena AK. 2021. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Braz. J. Microbiol. 52:1687–1699. Doi: 10.1007/s42770-021-00625-w. Sharma M, Manhas RK. 2020. Purification and characterization of salvianolic acid B from Streptomyces sp. M4 possessing antifungal activity against fungal phytopathogens. Microbiol. Res. 237. doi: 10.1016/j.micres.2020.126478. Shimizu M, Naznin HA, Hieno A. 2022. The significance of mycoparasitism by Streptomyces sp. MBCN152-1 for its biocontrol activity against Alternaria Brassicicola. Microbes Environ. 37(3). doi: 10.1264/jsme2.ME22048. Shree RTN, Kalpana K, Ebenezar EG, Theradimani M, Thiruvudainambi M, Vellaikumar S. 2020. Survey for purple blotch disease of onion (Allium cepa L.) in Cited by Alternaria porri (Ellis) Cifin different regions of Tamil Nadu. Int.J.Curr.Microbiol.App.Sci. 9(12): 323-329. doi: 10.20546/ijcmas.2020.912.042. Shreevidya M, Gopalakkrishnan S, Kudapa H, Varshney NK . 2016. Exploring plant growth-promoting actinomycetes from vermicompost and rhizozphere soil for yield enhancement in chickpea. Braz J Microbiol. 47: 85-95. Sianipar JF, Mariati, Rahmawati N. 2015. Karakterisasi dan evaluasi morfologi bawang merah lokal Samosir (Allium ascalonicum L.) pada beberapa aksesi di Kecamatan Bakti Raja. Jurnal Agroekoteknologi, 1 (4): 1962-1972. Silva GDC, Kitano IT, Ribeiro IADF, Lacava PT. 2022. The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture. Front. Soil Sci. 2:1-20 doi: 10.3389/fsoil.2022.833181. Simeis DD, Serra S. 2021. Actinomycetes: a never-ending source of bioactive compounds—an overview on antibiotics production. Antibiotics. 10(5), 483. DOI: 10.3390/antibiotics10050483. Simko I, Piepho HP. 2012. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology. 102(4): 381–389. doi: 10.1094/PHYTO-07-11-0216. Skalka B, Smola J, Pillich J. 1979. A simple method of detecting staphylococcal hemolysin. Zbl. Bakteriol. Hyg. I. Abt. Orig. A; 245: 283-286. Smaoui, S., Mathieu, F., Elleuch, L., Coppel, Y., Merlina, G., Karray-Rebai, I., Mellouli, L., 2012. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World. J. Microbiol. Biotechnol. 28, 793- 804. https://doi.org/10.1007/s11274-011-0872-6. Song L, Jiang N, Wei S, Lan Z, Pan L. 2020. Isolation, screening, and identification of actinomycetes with antifungal and enzyme activity assays against Colletotrichum dematium of Sarcandra glabra. Mycobiology. 48(1):37–43. Doi: 10.1080/12298093.2020.1716604. Sousa J A J, Olivares F L. 2016. Plant Growth Promotion by Streptomyces: ecophysiology, mechanisms and applications. ChemBiol Technol Agric. 3(24): 1-12. Sukmawaty E, Sari SR, Masri M. 2020. Characterization of soil actinomycetes from Malino pine forest rhizosphere of South Sulawesi. Elkawnie, 6(2), 315- 328. Doi: 10.22373/ekw.v6i2.5383. Sulistyani N, Akbar AN. 2014. Aktivitas isolat actinomycetes dari rumput laut (Eucheuma cottonii) sebagai penghasil antibiotik terhadap Staphylococcus aureus dan Escherichia coli. Jurnal Ilmu Kefarmasian Indonesia. 12(1):1-9. Suryadi Y, Susilowati DN, Lestari P, Priyatno TP, Samudra IM, Hikmawati N, Mubarik NR. 2014. Caracterisation of Bacterial isolates producing chitinase and Glukanase for Biocontrol of plant fungal pathogens. Int. J. Agric. 10(4):983-999. Susandi Y N K. Denny S. Sualang, Meisye H.B. Paruntu. 2018. Antagonisme Trichoderma sp. terhadap Alternaria porri Patogen Penyakit Bercak Ungu Tanaman Bawang Merah Pada Beberapa Media. Universitas Samratulangi. Manado Sutrisno. 2015. Faktor-faktor lingkungan yang mempengaruhi pengembangan budidaya bawang merah (Allium ascalonicum, sp) di Kabupaten Pati. Jurnal Litbang 11(2): 93-102. Suwandi. 2014. Budi Daya Bawang Merah di Luar MusimTeknologi Unggulan Mengantisipasi Dampak Perubahan Iklim. Katalog. Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian. 35 hal. Tangjitjaroenkun J. 2018. Evaluation of antioxidant, antibacterial, and gas chromatography-mass spectrometry analysis of ethyl acetate extract of Streptomyces omiyaensis SCH2. Asian. J. Pharm. Clin. Res. 11, 271. doi: 10.22159/ajpcr.2018.v11i7.25692. Techaoei S, Leelapornpisid P, Santiarwarn D, Lumyong S. 2007. Preliminary screening of biosurfactantproducing microorganisms isolated from hot spring and garages in northern Thailand. KMITL Sci. Tech. J. 7(1). Thavasi R, Sharma S, Jayalakshmi S. 2011. Evaluation of Screening Methods for the Isolation of Biosurfactant Producing Marine Bacteria. J Pet Environ Biotechnol. Doi: 10.4172/2157-7463.S1-001. Utarti E, Suwanto A, Suhartono MT, Meryandini A. 2020. Identifikasi Aktinomiset Selulolitik dan Xilanolitik Indigenous. Berkala Sainstek. 7(1): 1-5. Vasanthabharathi V, Jayalakshmi S. 2020. Review on melanin from marine actinomycetes. J Basic Appl Sci. 16:39–42. Doi: 10.29169/1927-5129.2020.16.05. Ventura MC Canchaya A Tauch G, Chandra G Fitzgerald KF Chater, D Sinderen. 2007. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiol. Mol. Biol. Rev. 71(3): 495–548. Vorholt JA. 2012. Microbial life in the phyllosphere. Nature. 10:828-840. Wahyudi AT, Priyanto JA, Fijrina HN, Mariastuti HD, Nawangsih AA. 2019. Streptomyces spp. from rhizozphere soil of maize with potential as plant growth promoter. Biodiversitas 20 (9):2547-2553. Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H. 2013. Antifungal Activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341 (1): 45-51. Wang W, Cai B, Shao Z, 2014. Oil Degradation and Biosurfactant Production by The Deep Sea Bacterium Dietzia maris As-13-3. Front. Microbiol. 5: 711. Wati C, Nawangsih AA, Wahyudi AT , Wiyono S, Munif A. 2023. Diversity of phyllospheric actinomycetes in Liliaceae plants and their potential as growth inhibitors of Alternaria porri. Biodiversitas. 24(10): 5234-5242. doi: 10.13057/biodiv/d241003. Weber G. F., 1973. Bacterial and Fungal Diseases of Plant In The Tropics. University of Florida Press, USA. Wijayanti E, Nawangsih AA, Tondok ET. 2021. Penapisan aktinomiset rhizosfer tanaman liliaceae sebagai agens pengendali hayati Fusarium oxysporum f. sp. cepae. J. Fitopatol. Indones. (6): 225–232. doi: 10.14692/jfi.17.6.225–232. Wiraswati SM. 2019. Bakteri Filosfer Penghasil Senyawa Bioaktif sebagai Pengendali Penyakit Blas pada Padi. Tesis. Sekolah Pascasarjana Instirut Pertanian Bogor. Bogor. Woudenberg JHC, Truter M, Groenewald, Crous PW. 2014. Large-spored Alternaria pathogens in section Porri disetangled. Studies Mycol. 75:1-47. DOI: https://doi.org/10.1016/j.simyco.2014.07.003. Yadav PM, Rakholia KB, Pawar KB. 2013. Evaluation of bioagents for management of the onion purple blotch and bulb yield loss assessment under field conditions. The Bioscan. (94): 1295-1298. Yavuzaslanoglu E, Dikici A. Elekcioglu H. Aydogdu M. 2015. Distribution of nematodes on onion and their relationship with soil physicochemical characteristics in Karaman province, Turkey. Türk. entomol. derg. 39 (3): 251-259. Doi: 10.16970/ted.48085. Yu Z, Lu T, Qian H. 2023. Pesticide interference and additional effects on plant microbiomes. Science of The Total Environment. 888: 164149. Doi:10.1016/j.scitotenv.2023.164149. Zaid DS, Li W, Yang S, Li Y. 2023. Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi. ASM Journals. Doi: https://doi.org/10.1128/spectrum.00519-23 Zho S, Du CM, Tian CY. 2012. Suppression of Fusarium oxysporum and induced resistance of plant involved in the biocontrol of cucumber fusarium wilt by Streptomycetes bikiniensis HD-087. World J Microbiol Biotechnol 28(9): 2919-2927. Zhu W, MaGbanua MM, White FF. 2000. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol. 182 (7): 1844– 1853. DOI: https://doi.org/10.1128/jb.182.7.1844-1853.2000.id
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/150467
dc.description.abstractBawang merah merupakan salah satu komoditas tanaman hortikultura di Indonesia yang memiliki nilai ekonomis tinggi. Namun dalam upaya meningkatkan produksi bawang merah banyak mendapatkan kendala diantaranya adanya gangguan organisme penganggu tanaman seperti penyakit bercak ungu yang disebabkan oleh Alternaria porri. Ell. Cif. Penyakit ini dapat menginfeksi berbagai macam-macam genus Allium. Tingkat keparahan penyakit bercak ungu 29,5%-60,8%, dan menyebabkan kerugian hasil 30%-100%. A. porri dapat menginfeksi bawang merah mulai dari daun hingga umbi sehingga menurunkan hasil produksi. Pengendalian saat ini sangat bergantung pada penggunaan fungisida kimia sintetik. Pengendalian lain sebagai alternatif adalah penggunaan agens biokontrol aktinomiset. Beberapa aktinomiset telah dilaporkan dapat menekan patogen tanaman dengan memproduksi senyawa antifungi. Penelitian bertujuan untuk: (1) memperoleh keanekaragaman aktinomiset filosfer dari tanaman Liliaceae; (2) mengetahui karakteristik aktinomiset filosfer tanaman Liliaceae yang memiliki aktifitas antifungi terhadap cendawan A. porri secara in-vitro; (3) mengetahui potensi galur aktinomiset filosfer dalam menekan penyakit bercak ungu, serta memacu pertumbuhan tanaman bawang merah secara in-planta; (4) mengidentifikasi aktinomiset terbaik melalui sekuen gen 16S rRNA; dan (5) mengidentifikasi kandungan senyawa bioaktif antifungi dari isolat terbaik. Penelitian dilaksanakan melalui lima tahapan, yaitu: (1) eksplorasi aktinomiset filosfer dari berbagai jenis tanaman Liliaceae; (2) seleksi dan karakterisasi aktinomiset filosfer; (3) identifikasi isolat aktinomiset terpilih melalui sekuen gen 16S rRNA; (4) menguji keefektifan aktinomiset terpilih dalam menekan penyakit bercak ungu secara in planta di rumah kaca; dan (5) identifikasi kandungan senyawa bioaktif antifungi dari isolat terbaik. Isolat yang berhasil diisolasi diuji keamanan hayatinya melalui uji reaksi hipersensitivitas pada tanaman tembakau, uji patogenisitas pada tanaman bawang merah, dan uji hemolisis pada agar darah. Isolat yang terseleksi selanjutnya diuji kemampuan antagonismenya terhadap A. porri melalui uji dual culture. Isolat yang memberikan penghambatan tertinggi diuji keefektifannya di rumah kaca. Isolat tersebut juga dikarakterisasi kemampuan fisiologinya dalam menghasilkan enzim kitinase, dan senyawa biosurfaktan. Isolat-isolat potensial diidentifikasi secara molekuler menggunakan primer universal aktinomiset 27F dan 16Sact1114R. Isolat terbaik yang mampu menekan A. porri baik secara in vitro maupun in vivo dianalisis kandungan senyawa bioaktifnya dengan menggunakan gas chromatography mass spectrometry (GC-MS). Sebanyak 216 isolat aktinomiset berhasil diisolasi dari tujuh jenis tanaman Liliaceae. Setelah diseleksi makromorfologi dan mikromorfologi terseleksi 46 isolat, dari 46 isolat aktinomiset filosfer terdapat 15 jenis isolat yang bersifat positif reaksi hipersensitivitas, lima jenis isolat yang bersifat positif hemolisis, dan tiga jenis isolat yang bersifat positif patogenisitas, sehingga terseleksi 26 isolat yang bersifat non patogenik (negatif reaksi hiversensitivitas, negatif patogenesitas, dan negatif hemolisis). Hasil penelitian menunjukkan bahwa ditemukan berbagai galur aktinomiset filosfer pada tanaman Liliaceae yang memiliki morfologi beragam. Bentuk morfologi dari koloni aktinomiset filosfer tanaman Liliaceae memiliki bentuk seperti berkerut, bulat, bentuk L, kompleks, bulat dengan tepi serabut. Permukaan koloni seperti wool, tidak beraturan, halus, foliform, lobat, dan bergelombang. Koloni aktinomiset pada awal pertumbuhan seperti koloni bakteri pada umumnya sampai hari ketiga, pada umur 4-15 hari mulai muncul seperti tepung di atas permukaan koloni. Warna atau pigmentasi koloni bermacam-macam yaitu oranye, putih, abu kehitaman, dan kehitaman. Ukuran koloni aktinomiset 1,65-8,57 mm dengan skala 2 mm. Ukuran hifa 0,71-2,30 µm pada perbesaran 200x, dan memiliki gram positif. Aktinomiset yang didapat memiliki keragaman dari tipe rantai spora spiral, retinaculiaperti, dan rectiflexibeles. Pada pengujian dual culture terhadap 26 isolat, menghasilkan penghambatan terhadap A. porri sebesar 4,22-57,78%. Sebanyak 10 isolat potensial untuk dilihat karakteristiknya dan dilanjutkan ke pengujian in vitro. Berdasarkan hasil pengujian secara in vitro didapat bahwa 10 isolat aktinomiset yang diujikan mampu memproduksi enzim kitinase dengan indeks kitinolitik sebesar 0,08-0,72. Isolat BBW14 merupakan penghasil kitin tertinggi pada hari ketujuh dengan indeks kitinolitik sebesar 0,72, nilai OD (optical density) sebesar 1,0982 U/mL. Aktinomset filosfer juga mampu memproduksi senyawa biosurfaktan dimana nilai zona jernih tertinggi sebesar 30,33 mm dengan waktu terbentuknya ODA 54 detik, dan indeks emulsifikasi tertinggi sebesar 22,52%. Pengaplikasian aktinomiset dapat meningkatkan pertumbuhan tanaman bawang merah terutama diameter umbi, bobot basah, dan bobot kering umbi. Selain itu agens biokontrol aktinomiset ini dapat menurunkan persentase keparahan penyakit dan kejadian penyakit bercak ungu, serta dapat memperpanjang waktu inkubasi A. porri hingga 8,5 hari. Penggunaan agens biokontrol aktinomiset filosfer efektif mengendalikan A. porri di rumah kaca dengan persentase keefektifan pengendalian tertinggi mencapai 78,3% pada isolat CFS 28. Tiga spesies aktinomiset terbaik yang terindentifikasi yaitu isolat CFS28 adalah Streptomyces enissocaesilis, isolat BBW 12 adalah S. maritimus, dan isolat BBW 14 adalah S. rochei. Tiga senyawa bioaktif tertinggi yang terdeteksi dari ketiga isolat terbaik yaitu 11-octadecenoic acid, methyl ester; hexadecanoic acid, methyl ester; dan 9- octadecanoic acid, methyl ester. Ketiga spesies aktinomiset tersebut memiliki bioaktivitas sebagai antifungi.id
dc.description.sponsorshipBPPSDMP Kementerian Pertanianid
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleAktinomiset Filosfer Penghasil Senyawa Antifungi sebagai Agens Biokontrol Penyakit Bercak Ungu (Alternaria porri Ell. Cif.) pada Tanaman Bawang Merahid
dc.typeDissertationid
dc.subject.keywordabundanceid
dc.subject.keywordAllium.id
dc.subject.keywordbioactiveid
dc.subject.keywordcharacterizationid
dc.subject.keywordscreeningid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record