View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Fitoplankton menggunakan Deep Learning dengan Algoritma YOLOv8 Diimplementasikan pada Website

      Thumbnail
      View/Open
      Cover (526.3Kb)
      Fullteks (9.299Mb)
      Lampiran (793.4Kb)
      Date
      2024
      Author
      Lotaldy, Alnodio
      Jaya, Indra
      Iqbal, Muhammad
      Lestari, Dea Fauzia
      Metadata
      Show full item record
      Abstract
      Fitoplankton memiliki peran penting dalam ekosistem dan dapat berfungsi sebagai bioindikator kualitas perairan. Genus Bacteriastrum, Chaetoceros, dan Thalassiothrix merupakan diatom yang dominan karena morfologinya yang dapat hidup dalam lingkungan tercemar. Identifikasi fitoplankton menjadi krusial untuk analisis dan mencegah potensi kerusakan ekosistem. Metode konvensional memerlukan waktu dan keahlian observasi karena kemiripan morfologi, sehingga diperlukan metode alternatif yang mudah dan efisien. Oleh karena itu, tujuan penelitian ini menggunakan metode deep learning algoritma YOLOv8 yang diimplementasikan pada website dengan framework Flask untuk menjadi solusi. Pengambilan sampel dilakukan pada dua tempat yaitu Perairan Palabuhanratu dan Perairan Pulau Kelapa Dua dengan aktif dan pasif vertikal. Pelabelan melalui platform Roboflow dan training dilakukan pada Google Colaboratory dengan dua model epoch berbeda yaitu 1000 dan 3000, 16 batch, serta learning rate 0,01. Implementasi website dilakukan dengan framework Flask. Sampel yang diperoleh sebesar 700 dataset yang seimbang dengan genus Bacteriastrum, Chaetoceros, dan Thalassiothrix. Performa model training epoch 3000 menghasilkan akurasi sebesar 97,14%, recall, precision, dan F1-score berturut-turut 0,9855. Model tersebut dapat bekerja dengan baik diimplementasi menggunakan framework Flask setelah diuji.
       
      Phytoplankton has an important role in the ecosystem and serve as a bioindicator of water quality. The genera Bacteriastrum, Chaetoceros, and Thalassiothrix are the dominant diatoms because of their morphology that can live in polluted environments. Pythoplankton identification is crucial for analysis and prevent potential ecosystem damage. Conventional methods require time and observation skills due to morphological similarities, so an easy and efficient alternative method is needed. Therefore, the purpose of this research is to use deep learning YOLOv8 algorithm implemented on websites with Flask framework method can be a solution. Sampling was conducted in two places, namely Palabuhanratu and Kelapa Dua Island Waters with active and passive vertical. Labeling uses the Roboflow platform and training is carried out on Google Colaboratory with two different epoch models, namely 1000 and 3000, 16 batches, and a learning rate of 0.01. Website implementation uses Flask framework. Balanced 700 datasets obtained with the genera Bacteriastrum, Chaetoceros, and Thalassiothrix. The performance of the model from epoch 3000 training results in high accuracy of 97.14%, recall, precision, and F1-score of 0.9855 respectively. This model can work well implemented using the Flask framework after testing.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/143989
      Collections
      • UT - Marine Science And Technology [2094]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository