View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Penanganan Pelanggaran Asumsi Model Regresi Linear Menggunakan Regresi Linear Time Series dan Metode Cochrane-Orcutt

      Thumbnail
      View/Open
      Cover (415.8Kb)
      Fulltext (2.070Mb)
      Lampiran (631.4Kb)
      Date
      2023
      Author
      Sarwono, Muhammad Reza Wibisono Rizqullah
      Budiarti, Retno
      Septyanto, Fendy
      Metadata
      Show full item record
      Abstract
      Seorang investor memiliki keinginan untuk mendapatkan keuntungan dari hasil berinvestasi dengan cara membeli saham dari suatu perusahaan. Selain memberikan imbal hasil yang tinggi, berinvestasi pada saham juga memiliki risiko yang tinggi. Oleh karena itu, untuk mengurangi risiko dilakukan peramalan harga saham di masa depan. Adapun metode yang digunakan yaitu melalui model regresi linear. Model tersebut memiliki asumsi-asumsi yang harus dipenuhi. Dalam penelitian ini dilakukan studi kasus pada harga saham BMRI yang diregresikan terhadap IHSG. Terdapat pelanggaran asumsi kebebasan galat yang ditangani dengan metode Cochrane-Orcutt dan regresi linear time series. Dari dua metode tersebut dibandingkan dan didapatkan bahwa metode Cochrane-Orcutt lebih baik dengan MAPE sebesar 0,886% daripada metode regresi time series dengan MAPE sebesar 5,178%.
       
      An investor has a desire to benefit from investment results by buying shares of a company. Apart from providing high returns, investing in stocks carries a high risk. Therefore, to reduce risk, stock price forecasting is carried out in the future. The method used is a linear regression model. The model has assumptions that must be met. This research, conducted a case study on BMRI's stock price which was regressed against the IDX Composite. There is a violation of the assumption of freedom of error which is handled by the Cochrane-Orcutt method and linear time series regression. The two methods were compared and it was found that the Cochrane-Orcutt method was better, with a MAPE of 0.886% than the time series regression method, with a MAPE of 5.178%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/123274
      Collections
      • UT - Actuaria [205]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository