View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Faktor – Faktor yang Memengaruhi Kasus Stunting di Jawa Barat Tahun 2021 Menggunakan Regresi Spasial Binomial Negatif

      Thumbnail
      View/Open
      Skripsi (2.365Mb)
      Cover (413.5Kb)
      Bab I Pendahuluan (152.3Kb)
      Bab II Tinjauan Pustaka (245.0Kb)
      Bab III Metode (186.3Kb)
      Bab IV Hasil dan Pembahasan (781.6Kb)
      Bab V Simpulan (147.4Kb)
      Lampiran (176.2Kb)
      Date
      2023
      Author
      Amelia, Mely
      Djuraidah, Anik
      Anisa, Rahma
      Metadata
      Show full item record
      Abstract
      Stunting merupakan gangguan pertumbuhan dan perkembangan pada anak yang ditandai dengan tinggi badan anak berada di bawah standar. Provinsi Jawa Barat dengan angka prevalensi stunting 24,5 persen merupakan salah satu provinsi yang termasuk dalam 12 provinsi prioritas untuk menjalankan rencana aksi nasional percepatan penurunan stunting. Kasus stunting merupakan data cacah dan kejadiannya jarang terjadi. Analisis yang dapat digunakan adalah regresi Poisson. Asumsi yang harus dipenuhi pada regresi Poisson adalah equidispersi namun sulit dipenuhi karena kondisi overdispersi. Salah satu cara mengatasi overdispersi adalah menggunakan analisis regresi binomial negatif. Kasus stunting di Provinsi Jawa Barat terindikasi adanya efek spasial sehingga perlu digunakan pemodelan spasial. Penelitian ini bertujuan menentukan peubah yang memengaruhi kasus stunting di Provinsi Jawa Barat tahun 2021 dengan menggunakan regresi spasial binomial negatif. Hasil penelitian menunjukkan terdapat overdispersi. Uji efek spasial menunjukkan tidak terdapat heterogenitas pada data, terdapat dependensi spasial pada robust lag, dan terdapat dependensi spasial pada beberapa peubah penjelas. Hasil penelitian menunjukkan model terbaik dengan nilai AIC terkecil adalah spatial autoregressive binomial negatif. Peubah yang berpengaruh signifikan terhadap banyaknya stunting adalah persentase bayi berusia kurang dari enam bulan mendapat ASI, persentase tempat pengelolaan makanan memenuhi syarat, dan persentase bayi berat badan lahir rendah.
       
      Stunting is a growth and development disorder in children characterized by the child's height being below standard. With a stunting prevalence rate of 24.5 percent, West Java province is one of the provinces included in the 12 priority provinces for carrying out the national action plan to accelerate stunting reduction. Stunting cases are count data, and their occurrence is rare. The analysis that can be used is Poisson regression. The assumption that must be fulfilled in Poisson regression is equidispersion, but it isn't easy to fulfill because of the overdispersion condition. One way to overcome overdispersion is to use negative binomial regression analysis. The case of stunting in West Java Province indicated a spatial effect, so it was necessary to use spatial modeling. This study aims to determine the variables that affect stunting cases in West Java Province in 2021 using negative binomial spatial regression. The results showed that there was overdispersion. The spatial effect test indicated that there is no heterogeneity in the data, there is a spatial dependency on RLM lag, and there are spatial dependencies on several variables. The results showed that the best model with the smallest AIC value was a spatial autoregressive negative binomial. Variables that have a significant effected on the number of stunting are the percentage of infants aged less than six months who are breastfed, the rate of places where food management meets the requirements, and the percentage of babies with low birth weight.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/119871
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository