View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Chemistry
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Chemistry
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Kajian In Silico Interaksi Senyawa dari Pala (Myristica fragrans) dengan Enzim Monoamina Oksidase-A sebagai Antidepresan

      Thumbnail
      View/Open
      Cover (281.2Kb)
      Fullteks (2.098Mb)
      Lampiran (1.242Mb)
      Date
      2022
      Author
      Rivaldi, Ahmad
      Achmadi, Suminar Setiati
      Irfana, Luthfan
      Metadata
      Show full item record
      Abstract
      Depresi disebabkan oleh meningkatnya aktivitas enzim monoamina oksidase-A (MAO-A). Beberapa obat antidepresan menghambat kerja enzim tersebut tetapi menimbulkan berbagai efek merugikan bagi tubuh. Pala (Myristica fragrans) memiliki senyawa berpotensi sebagai antidepresan, yaitu miristisin. Namun, aktivitas senyawa selain miristisin berdasarkan interaksinya dengan enzim MAO-A belum pernah dilaporkan. Interaksi senyawa pala dengan MAO-A dapat diketahui melalui pendekatan in silico. Metode ini membantu membuat putusan dan simulasi secara virtual dalam pengembangan obat. Dalam kajian ini, ditelusur interaksi antara ligan yang berasal dari senyawa pala dan reseptor MAO-A serta nilai energi ikat dan keserupaan situs ikat dalam pemilihan struktur ligan yang paling efektif untuk menghambat MAO-A. Berdasarkan hasil penambatan molekul, diperoleh dua ligan uji yang paling efektif sebagai inhibitor enzim MAO-A, yaitu maselignan (33) dengan energi ikat bebas ‒8,66 kkal/mol, Ki 0,4449 μM, dan %BSS 100% serta 2-(4-alil-2-metoksifenoksi)-1-(4-hidroksi-3-metoksifenil)-1-propanol (40) dengan energi ikat bebas ‒8,32 kkal/mol, Ki 0,7901 μM, dan %BSS 100%.
       
      Depression is caused by increased activity of the monoamine oxidase-A (MAO-A). Some antidepressant drugs inhibit the mechanism of MAO-A, but they give various side effects to the body. Nutmeg (Myristica fragrans) is an alternative natural ingredient containing an antidepressant, namely myristicin. However, the activity of compounds other than myristicin based on their interactions with MAO A hasn’t been reported. The interaction of nutmeg compounds with MAO-A can be determined using an in-silico approach. The method helps in decision-making and virtual simulation in drug development. This study aims to determine the interaction between ligands in nutmeg compounds and MAO-A receptors and to determine the binding energy and binding site similarity in selecting the most effective ligand structure to inhibit MAO-A. Molecular docking gives two most effective test ligands potentially as MAO-A inhibitors, namely macelignan (33) with free binding energy ‒8.66 kcal/mol, Ki 0.4449 μM, and %BSS 100% and 2-(4-allyl-2-methoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-1-propanol (40) with free binding energy ‒8.32 kcal/mol, Ki 0.7901 μM, and %BSS 100%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/115817
      Collections
      • UT - Chemistry [2295]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository