View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Metode Generalized AutoRegressive Conditional Heteroskedasticity untuk Peramalan Harga Minyak Mentah Dunia.

      Thumbnail
      View/Open
      Cover (531.2Kb)
      Fullteks (1.773Mb)
      Lampiran (282.5Kb)
      Date
      2022
      Author
      Zainal, Putri Hernanda
      Angraini, Yenni
      Rizki, Akbar
      Metadata
      Show full item record
      Abstract
      Minyak mentah merupakan salah satu komoditas yang sangat dibutuhkan di berbagai bidang. Harga minyak mentah dunia yang terus mengalami fluktuasi tentunya mengambil pengaruh yang besar terhadap perekonomian negara. Data harga minyak mentah yang dikumpulkan bersifat time series atau proses pengumpulannya dilakukan dari waktu ke waktu dengan periode bulanan. Oleh karena itu, diperlukan suatu sistem yang dapat membuat peramalan harga minyak mentah dunia kedepannya yang diharapkan dapat menjadi bahan pertimbangan pemerintah untuk pengambilan keputusan. Salah satu metode yang dapat digunakan untuk meramalkan harga minyak mentah dunia adalah ARIMA (Auto-Regressive Integrated Moving Average) dan model GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity). Pemodelan yang dilakukan terbukti bahwa data harga minyak mentah dunia periode Januari tahun 2002 hingga Juni 2022 memiliki efek heteroskedastisitas yang tidak dapat diatasi jika hanya menggunakan model ARIMA. Hasil dari pengolahan data diperoleh bahwa model ARIMA (0,1,2) yang dilanjutkan model ARCH (2) merupakan model terbaik dengan nilai MAPE sebesar 5,32%. Nilai akurasi yang diperoleh tergolong sangat baik untuk peramalan harga minyak mentah dunia.
       
      Crude oil is one of the commodities that are needed in various fields. World crude oil prices that continue to fluctuate, of course, have a big influence on the country's economy. Crude oil price data collected is time series or the collection process is carried out from time to time with monthly periods. Therefore, we need a system that can forecast future world crude oil prices which are expected to be taken into consideration by the government for decision making. One method that can be used to predict world crude oil prices is ARIMA (Auto-Regressive Integrated Moving Average) and GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) model. After modeling, it is proven that the world crude oil price data for the period January 2002 to June 2022 has a heteroscedasticity effect that cannot be overcome if only using the ARIMA model. The results of data processing show that the ARIMA (0,1,2) followed by the ARCH model(2) is the best model with a MAPE value of 5,32%. The accuracy values obtained are classifield as very good for forecasting world crude oil prices.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/115327
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository