Algoritme Support Vector Machine untuk Analisis Sentimen Berbasis Aspek Ulasan Game Online Mobile Legends: Bang-Bang
Date
2022Author
Utami, Mar Atul Aji Tyas
Silvianti, Pika
Masjkur, Mohammad
Metadata
Show full item recordAbstract
Kehadiran era teknologi digital dipermudah dengan adanya koneksi internet yang mudah diakses serta menyediakan banyak fitur dan hiburan salah satunya game online. Mobile Legends: Bang-Bang merupakan game online berjenis Multiplayer Online Battle Arena (MOBA) yang populer sejak diluncurkan pada tahun 2016. Kepopuleran tersebut tidak terlepas dari ulasan pengguna yang memberikan informasi dan sentimen berbeda. Penelitian ini akan mengidentifikasi sentimen ulasan pengguna aplikasi berdasarkan aspek gameplay, performa, visualisasi, dan player. Metode klasifikasi yang digunakan dalam penelitian ini adalah Support Vector Machine (SVM). Aplikasi game online Mobile Legends: Bang-Bang cenderung memiliki sentimen negatif berdasarkan aspek gameplay, performa, dan player. Akan tetapi, dari aspek visualisasi ulasan cenderung memiliki sentimen positif. Hasil evaluasi model dilakukan berdasarkan nilai akurasi, F1-score, dan AUC didapatkan bahwa aspek gameplay, performa, dan player memberikan tingkat klasifikasi yang lebih baik dibandingkan aspek visualisasi. The presence of the digital technology era is facilitated by an internet connection that is easily accessible and provides many features and entertainment, one of which is online games. Mobile Legends: Bang-Bang is a Multiplayer Online Battle Arena (MOBA)-type online game that has been popular since its launch in 2016. Currently, Mobile Legends: Bang-Bang is still the top free game on the Google Play Store. This popularity is inseparable from user reviews that provide different information and sentiment. This research will identify the sentiment of application user reviews based on aspects of gameplay, performance, visualization, and player. The classification method used in this study is the Support Vector Machine (SVM). The online game application Mobile Legends: Bang-Bang tends to have negative sentiment from aspects of gameplay, performance, and player. However, from the visualization aspect, they tend to have positive sentiment. The results of the evaluation of the model based on the value of accuracy, F1-score, and AUC, it was found that the gameplay, performance, and player aspects gave better classification results than the visualization aspect.