View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Peramalan Harga Saham TLKM Menggunakan Model Hybrid Regresi Deret Waktu dan ARIMA

      Thumbnail
      View/Open
      Cover (744.3Kb)
      Fullteks (1.181Mb)
      Lampiran (436.3Kb)
      Date
      2022
      Author
      Suyono, Valeria Savista
      Budiarti, Retno
      Septyanto, Fendy
      Metadata
      Show full item record
      Abstract
      Investor saham di Indonesia meningkat pasca pandemik Covid-19. Saham diminati masyarakat Indonesia karena memberikan return yang cukup besar. Namun return yang tinggi sebanding dengan risiko tinggi yang harus dihadapi oleh investor. Untuk mengurangi risiko yang terjadi, maka diperlukan peramalan harga saham. Harga saham merupakan data deret waktu maka harga saham dapat dimodelkan dengan regresi deret waktu. Namun hasil yang diperoleh untuk harga saham TLKM melanggar asumsi autokorelasi sehingga penelitian dilanjutkan dengan memodelkan sisaan menggunakan model ARIMA. Model ARIMA(2,1,1) merupakan model terbaik untuk memodelkan sisaan karena memenuhi semua asumsi dan memiliki nilai AIC terkecil. Jadi, harga saham TLKM dimodelkan dengan menggabungkan regresi deret waktu dan model ARIMA (ARIMA Hybrid). Hasil peramalan harga saham TLKM untuk sembilan periode berikutnya menghasilkan nilai MAPE 2.97%.
       
      Investor in Indonesia increased after the Covid-19 pandemic. Stocks are in demand by the Indonesian because they provide big return. However, the high return is proportional to the high risk that must be faced by investors. To reduce the risk that occurs, it is necessary to forecast stock prices. Stock prices are time series data, so stock price can be modeled with time series regression. However, the results obtained for TLKM stock price violated the assumption of autocorrelation so that the research is continued by modeling the residuals using the ARIMA model. ARIMA(2,1,1) model is the best model to the residuals because it fulfills all assumptions and has the smallest AIC value. Therefore, the stock price of TLKM is modeled by combining the time series regression and ARIMA model (ARIMA Hybrid). Forecasting results for the next nine periods of the TLKM stock price produce a MAPE value of 2.97%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/114250
      Collections
      • UT - Actuaria [205]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository