View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Regresi Terboboti Geografis dan Temporal pada Angka Kemiskinan di Jawa Tengah Tahun 2017-2019

      Thumbnail
      View/Open
      Cover (4.298Mb)
      Full text (4.834Mb)
      Lampiran (2.217Mb)
      Date
      2022
      Author
      Khairullah, Bintang Rizqi
      Alamudi, Aam
      Aidi, Muhammad Nur
      Metadata
      Show full item record
      Abstract
      Pada tahun 2019 Provinsi Jawa Tengah memiliki persentase penduduk miskin sebesar 10,8 persen. Persentase tersebut bertentangan dengan sasaran tingkat kemiskinan untuk Provinsi Jawa Tengah tahun 2019 yang ditetapkan oleh pemerintah yaitu sebesar 10,57 persen sehingga dapat disimpulkan bahwa pengentasan kemiskinan di Jawa Tengah masih merupakan permasalahan. Untuk menduga faktor-faktor yang memengaruhi kemiskinan di Jawa Tengah dapat digunakan metode regresi. Namun metode tersebut tidak mempertimbangkan keragaman spasial yang ada pada data. Untuk menganalisis keragaman spasial, dapat digunakan metode regresi terboboti geografis (RTG). Selain unsur spasial, unsur temporal juga dapat menyebabkan keragaman. Untuk mengakomodasi keragaman spasial-temporal, metode RTG dikembangkan menjadi metode regresi terboboti geografis dan temporal (RTGT) dengan cara menambahkan unsur temporal kedalamnya. Uji F yang dilakukan untuk menguji ketepatan model RTGT menghasilkan nilai-p 0,000897675 sehingga dapat disimpulkan bahwa terdapat signifikansi penggunaan model RTGT dibandingkan model regresi. Hasil pendugaan parameter model RTGT menujukkan bahwa tingkat pengangguran terbuka dan laju pertumbuhan PDRB memberikan pengaruh negatif dan positif, upah minimum kabupaten/kota dan rata-rata lama sekolah memberikan pengaruh negatif. Pengujian parsial parameter model RTGT menunjukkan bahwa pada kurun waktu 2017-2019 upah minimum kabupaten/kota, rata-rata lama sekolah, dan tingkat pengangguran terbuka berpengaruh nyata pada mayoritas kabupaten/kota, sedangkan laju pertumbuhan PDRB hanya berpengaruh nyata pada kabupaten/kota tertentu.
       
      In 2019, 10,8 percent population of Central Java Province live below poverty. This percentage is contrary to the poverty rate target for Central Java Province in 2019 set by the government, which is 10,57 percent, so it can be concluded that poverty alleviation in Central Java is still a problem. To analyze the factors that influence poverty in Central Java, the regression method can be used. However, this method does not consider the spatial heterogeneity in the data. To analyze spatial heterogeneity, geographically weighted regression (GWR) method can be used. In addition to spatial elements, temporal elements can also cause heterogeneity. To accommodate the spatial-temporal heterogeneity, the GWR method then developed into geographically and temporally weighted regression (GTWR) method by adding temporal element into it. The F test which was carried out to test the goodness of fit of the GTWR model resulted in a p-value = 0,000897675 so it can be concluded that there is a significant use of the GTWR model compared to the regression model. The results of the parameters estimation of GTWR model show that open unemployment rate and GDRP growth rate have negative and positive effect, district/city minimum wage and mean years schooling have a negative effect. Partial testing of the parameters of the GTWR model shows that in 2017-2019, district/city minimum wage, mean years schooling, open unemployment rate have significant effect on the majority of districts/cities, while GDRP growth rate has significant effect only on a few districts/cities.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/111417
      Collections
      • UT - Statistics and Data Sciences [1212]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository