Show simple item record

dc.contributor.advisorSilvianti, Pika
dc.contributor.advisorAfendi, Farit Mochamad
dc.contributor.authorRoza, Mochamad Rama Deska Pratama
dc.date.accessioned2022-02-28T13:20:18Z
dc.date.available2022-02-28T13:20:18Z
dc.date.issued2022
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/111250
dc.description.abstractSalah satu masalah mendasar dan menjadi perhatian serius berbagai negara yang dapat dikaji dari dimensi ekonomi dan sosial politik adalah kemiskinan. Menurut data yang dirilis Badan Pusat Statistik (BPS) per September 2020, angka kemiskinan di Indonesia tercatat 10,19%. Provinsi D.I. Yogyakarta dan Jawa Tengah merupakan provinsi dengan persentase penduduk miskin tertinggi di Jawa. Persentase penduduk miskin di D.I Yogyakarta sebesar 12,80%, sedangkan di Jawa Tengah 11,84% dengan garis kemiskinan Rp. 465.428/kapita di D.I Yogyakarta dan Rp. 395.407/kapita di Jawa Tengah. Penelitian ini bertujuan untuk mendapatkan model kemiskinan dengan lima peubah menggunakan metode regresi nonparametrik aditif berdasarkan penduga penalized spline. Metode ini digunakan karena memiliki karakteristik untuk mengontrol kelancaran kurva, sehingga kurva terhindar dari kekakuan dan overfitting. Penerapan model regresi nonparametrik aditif pada persentase penduduk miskin di D.I Yogyakarta dan Jawa Tengah memiliki MSE sebesar 3.91 dengan koefisien determinasinya (R^2) sebesar 70,74%.id
dc.description.abstractOne of the fundamental problems and a severe concern of various countries studied from the economic and socio-political dimensions is poverty. According to data released by the Badan Pusat Statistik (BPS), as of September 2020, the poverty rate in Indonesia stood at 10.19%. D.I. Yogyakarta and Central Java are provinces with the highest percentage of poor people in Java. The percentage of poor people in D.I Yogyakarta is 12.80%, while Central Java is 11.84%, with a poverty line of Rp. 465.428/capita in D.I Yogyakarta and Rp. 395.407/capita in Central Java. This study aims to obtain a poverty model with five variables using an additive nonparametric regression method based on the penalized spline estimator. This method is employed because it has characteristics to control the curve's smoothness, preventing the curve's stiffness and overfitting. The application of the additive nonparametric regression model on the percentage of poor people in Yogyakarta and Central Java has an MSE of 3.91 with a coefficient of determination (R^2) of 70.74%.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titlePendekatan Regresi Nonparametrik Penalized Spline untuk Memodelkan Persentase Kemiskinan di D.I. Yogyakarta dan Jawa Tengahid
dc.title.alternativePenalized Spline Nonparametric Regression Approach to Modeling Poverty Percentage in D.I. Yogyakarta and Central Javaid
dc.typeUndergraduate Thesisid
dc.subject.keywordadditive nonparametric regressionid
dc.subject.keywordpenalized splineid
dc.subject.keywordpoverty percentageid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record