View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Determinan dan Invers Matriks Toeplitz Tridiagonal

      Thumbnail
      View/Open
      Cover (755.3Kb)
      Fullteks (1.037Mb)
      Date
      2021-09
      Author
      Satria, M. Fadli
      Aliatiningtyas, Nur
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Matriks merupakan susunan dari bilangan-bilangan yang diatur dalam kolom dan baris yang berbentuk persegi atau persegi panjang, salah satu jenis matriks adalah matriks Toeplitz. Matriks Toeplitz adalah matriks simetrik yang setiap unsur pada diagonal utamanya sama, dan setiap unsur pada subdiagonal yang bersesuaian dengan diagonal utama juga sama. Pada karya ilmiah ini diformulasikan cara hitung efisien untuk menentukan determinan dan invers matriks Toeplitz Tridiagonal. Formulasi determinan diberikan dalam bentuk eksplisit dan rekursif. Rumusan eksplisit diturunkan mengikuti pola binomial dan dibuktikan secara induktif. Sedangkan formula rekursif diperoleh dari mengamati struktur entri matriks tersebut. Pada akhirnya, formula rekursif ini menjadi dasar untuk merumuskan cara menghitung invers matriks Toeplitz Tridiagonal yang efisien.
       
      A matrix is an arrangement of numbers arranged in columns and rows in the form of a square or rectangle, one type of matrix is the Toeplitz matrix. The Toeplitz matrix is a symmetric matrix in which every element on the main diagonal is the same, and every element in the subdiagonal corresponding to the main diagonal is also the same. In this scientific paper, an efficient calculation method is formulated to determine the determinant and the inverse of the Tridiagonal Toeplitz matrix. The determinant formulation is given in an explicit and a recursive form. The explicit formula is derived from binomial patterns and the proof is based on inductive method. While the recursive formula is obtained from observing the structure of the matrix entry. In the end, this recursive formula becomes the basis for formulating an efficient way to calculate the inverse of the Tridiagonal Toeplitz matrix.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/109084
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository