View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Produksi Pertanian menggunakan seasonal ARIMA

      Thumbnail
      View/Open
      Cover (1.203Mb)
      Fullteks (1.356Mb)
      Lampiran (609.3Kb)
      Date
      2021
      Author
      Wibisono, Yusup Septian
      Budiarti, Retno
      Sumarno, Hadi
      Metadata
      Show full item record
      Abstract
      Pertanian menjadi sektor yang sangat penting dalam perekonomian banyak negara, termasuk Thailand. Karena itu, perlu ada suatu asuransi pertanian. Salah satu hal yang perlu diperhatikan dalam asuransi pertanian adalah meramalkan produksi pertanian agar perusahaan asuransi pertanian dapat menentukan premi, dan manfaat di masa yang akan datang. Pemodelan data deret waktu harus sesuai dengan karakteristik data yang dimiliki. Karakteristik data di Thailand tahun 2010-2018 memiliki pola musiman yang berulang setiap 12 bulan, sehingga tidak bisa dimodelkan dengan ARIMA biasa. Seasonal ARIMA adalah pemodelan data deret waktu yang dapat mengatasi pengaruh musiman pada data tersebut. Untuk itu dilakukan pemodelan seasonal ARIMA pada data tersebut dengan langkah-langkah yaitu cek asumsi, identifikasi model, pendugaan parameter, evalusi model, dan terakhir melakukan peramalan beberapa bulan ke depan. Model seasonal ARIMA (2,0,0)(1,1,1)12 adalah model terbaik untuk data indeks produk di Thailand karena telah memenuhi semua asumsi. Setelah dilakukan peramalan didapat MAPE sekitar 10%.
       
      Agriculture is a very important sector in the economy of many countries, including Thailand. Therefore, an agricultural insurance is needed. One of the things that need to be considered in agricultural insurance is agricultural production forecasting so that agricultural insurance companies can determine premiums and benefits in the future. Time series modeling must be in accordance with the characteristics of the data owned. The characteristics of Thailand's agricultural production data in 2010-2018 have a seasonal pattern that repeats every 12 months, so it can't be modeled with ordinary ARIMA. Seasonal ARIMA is a time series model that can overcome seasonal effects on the data. For this reason, seasonal ARIMA modeling is carried out on the data with steps namely checking assumptions, identifying models, estimating parameters, evaluating models, and finally forecasting the next few months. ARIMA seasonal Model (2,0,0)(1,1,1)12 is the best model for product index data in Thailand because it meets all assumptions. After forecasting, MAPE is obtained at around 10%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/108355
      Collections
      • UT - Actuaria [205]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository