Show simple item record

dc.contributor.advisorIswantini, Dyah
dc.contributor.advisorKusmana, Cecep
dc.contributor.advisorNurhidayat, Novik
dc.contributor.authorGhozali, Ali Aulia
dc.date.accessioned2021-04-23T02:54:39Z
dc.date.available2021-04-23T02:54:39Z
dc.date.issued2021
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/106639
dc.description.abstractProses pemantauan senyawaan aromatik dan turunannya lazim dilakukan menggunakan metode konvensional yang mengandalkan ekstraksi sampel menggunakan solven. Proses analisis ini berpotensi menambah beban cemaran lingkungan dengan adanya penggunaan solven-solven organik. Oleh sebab itu, dicari alternatif pengukuran metode pengukuran lain yang dapat lebih mengurangi konsumsi solven organik dalam proses analisisnya. Salah satu paradigma yang dikembangkan dalam mengatasi masalah tersebut dengan menerapkan prinsipprinsip green analytical chemistry (GAC) dalam proses analisis. Dengan pendekatan GAC telah dilakukan beberapa penelitian yang bertujuan mengevaluasi bioreseptor yang berpotensi digunakan sebagai bioreseptor biosensor. GAC adalah paradigma baru dalam dunia kimia analitik yang turut memberikan porsi penilaian dampak penggunaan suatu teknik pengukuran terhadap kualitas lingkungan hidup. Diharapkan dengan adanya informasi baru tentang bioreseptor ini dapat membuka peluang informasi baru pengembangan teknik biosensor ataupun beberapa hal yang terkait dengan penggunaan bioreseptor. Dalam penelitian ini digunakan dua macam bioreseptor, yakni enzim dan biofilm bakteri. Kedua bioreseptor dibandingkan kinerja analitiknya. Enzim yang digunakan dalam penelitian ini adalah PQQ-GDH (Pirolokuinon-kuinon glukosa dehidrogenase), sedangkan bakteri yang digunakan adalah Pseudomonas aeruginosa, Staphylococcus sciuri, dan Bacillus amyloliquifaciens. Pengamatan menggunakan enzim PQQ-GDH sebagai bioamplifikasi sinyal elektrokimia pada pengukuran katekol dan 1,2-dihidroksinaftalena, senyawaan model hasil degradasi PAHs secara elektrokimia menunjukkan peningkatan sinyal dapat dilakukan. Dengan demikian, enzim PQQ-GDH mampu berperan sebagai bioreseptor katekol dan 1,2-dihidroksinaftalena. Namun, saat dilakukan pengukuran secara bersamaan, terjadi distorsi sinyal yang mana efek dari 1,2-dihidroksinaftalena bersifat lebih kuat dan menetap. Akibatnya kinerja enzim GDH dan proses pengukuran menjadi sulit dilakukan kembali. Kedua senyawa ini memberikan respon potensial reduksi yang berbeda, sehingga mudah terbedakan pada profil voltametri. Selain itu, mikrob hasil isolasi dari limbah minyak juga diteliti. Tiga isolat bakteri yang telah teridentifikasi sebelumnya yang digunakan dalam penelitian ini yaitu: Pseudomonas aeruginosa, Staphylococcus sciuri, dan Bacillus amyloliquifaciens. Berdasarkan pengamatan aktivitas degradasinya ketiga isolat bakteri ini mampu mendegradasi senyawaan hidrofobik. Dan terpantau mudah Khusus pada pengamatan terhadap degradasi naftalena dan antrasena, diperlukan waktu selama 10 hari dengan kemampuan degradasi sekitar 70-80% pada media tanah steril dengan pengayaan berupa media garam mineral. Uji keberadaan enzim putatif oksigenase (NDO, naftalena dioksigenase; CAT23, katekol 2,3-dioksigenase) telah diupayakan, namun hasilnya belum vi memuaskan. Amplifikasi gen putatif hanya terjadi pada P. aeruginosa dan S. sciuri untuk enzim CAT23. Namun hasil uji balik secara in silico menunjukkan adanya perbedaan yang cukup signifikan antara hasil amplifikasi dengan target gen putatif pengkode enzim oksigenase. Isolat bakteri dibentuk dalam bentuk biofilm dengan film agarosa 1% yang ditumbuhkan pada SPCE, untuk mendeteksi beberapa senyawa turunan aromatik. Hasil pengamatan menunjukkan kinerja analitik yang cukup memadai, namun masih memiliki kekurangan mendasar di proses fabrikasi yang belum konsisten. Konsep GAC adalah suatu konsep yang baru dikembangkan, sebagai salah satu penyokong konsep pembangunan berkelanjutan (Agenda 20). GAC adalah turunan konsep green chemistry yang mana merupakan faktor komponen penyokong dari aspek teknologi untuk perbaikan kualitas ekologi. Secara umum, konsep GAC sudah semakin banyak diterapkan dalam laporan-laporan jurnal ilmiah. Namun, secara garis besar terdapat beberapa kendala dan tantangan yang perlu dihadapi praktisi pengembangan metodologi pengukuran. Salah satu faktor yang penting diperhatikan adalah trade off antara kekuatan kinerja analitik terhadap kualitas komponen penyusun metode. Hal yang sama juga ditemukan dalam penelitian ini, yakni biosensor enzim dan biofilm. Keduanya masih memiliki kelemahan di wilayah kinerja analitik dan ketegaran kekuatan metode terhadap bahan uji. Pengembangan teknologi di masa depan masih perlu memperkuat dan meningkatkan ketegaran dan kinerja analitik biosensor tersebut.id
dc.description.abstractThe process of monitoring aromatic compounds and their derivatives is commonly carried out using conventional methods that rely on sample extraction using solvents. This analysis process has the potential to increase the environmental pollution load by using organic solvents. Therefore, an alternative measurement is sought for other measurement methods that can further reduce the consumption of organic solvents in the analysis process. One of the paradigms developed in overcoming this problem is by applying the principles of green analytical chemistry (GAC) in the analysis process. With the GAC approach, several studies have been carried out aimed at evaluating the potential bioreceptors used as biosensor bioreceptors. GAC is a new paradigm in the world of analytical chemistry that also provides a portion of the impact assessment of using a measurement technique on environmental quality. It is hoped that this new information about bioreceptors can open up new information opportunities for the development of biosensor techniques or several things related to the use of bioreceptors. In this study, two kinds of bioreceptors were used, namely enzymes and bacterial biofilms. The two bioreceptors were compared for their analytic performance. The enzymes used in this study were PQQ-GDH (pyroloquinonequinone glucose dehydrogenase), while the bacteria used were Pseudomonas aeruginosa, Staphylococcus sciuri, and Bacillus amyloliquifaciens. Observations using the PQQ-GDH enzyme as a bioamplification of electrochemical signals on catechol measurements and 1,2-dihydroxinaphthalene, a model compound of PAHs degradation by electrochemistry showed that signal enhancement can be done. Thus, the PQQ-GDH enzyme is able to act as a catechol and 1,2-dihydroxinaphthalene bioreceptor. However, when the measurements were taken simultaneously, there was a distortion of the signal which the effect of 1,2-dihydroxinaphthalene was stronger and persistent. As the result, the performance of the GDH enzyme and the measurement process becomes difficult to redo again. These two compounds give different response potentials, so that they are easily distinguished on the voltammetric profile.In addition, microbes isolated from waste oil were also studied. Three previously identified bacterial isolates were used in this study: Pseudomonas aeruginosa, Staphylococcus sciuri, and Bacillus amyloliquifaciens. Based on the observation of the degradation activity of the three bacterial isolates, they were able to degrade hydrophobic compounds. Especially on the observation of the degradation of naphthalene and anthracene, it takes 10 days with the ability to degrade around 70-80% in sterile soil media enriched with mineral salt media. Tests for the presence of putative oxygenase enzymes (NDO, naphthalene dioxygenase; CAT23, catechol 2,3-dioxygenase) had been attempted, yet the results had not been satisfactory. Putative gene amplification only occurred in P. aeruginosa and S. sciuri for the CAT23 enzyme. However, the back test results in silico showed a significant difference between the amplification results and the viii putative gene targeting oxygenase enzyme. Bacterial isolates were formed in the form of biofilms with 1% agarose film grown on SPCE, to detect several aromatic derivatives. The observations showed that the analytical performance was quite adequate, but it still has fundamental flaws in the inconsistent fabrication process. The GAC concept is a newly developed concept, as one of the supporters of the concept of sustainable development (Agenda 20). GAC is a derivative of the green chemistry concept, which is a supporting component of the technology aspect for improving ecological quality. In general, the GAC concept has been increasingly applied in scientific journal reports. However, in general, there are several obstacles and challenges that need to be faced by practitioners of measurement methodology development. One important factor to consider is the trade off between the strength of the analytic performance and the quality of the components of the method. The same thing was also found in this study, namely enzyme biosensors and biofilms. Both of them still have weaknesses in the area of analytic performance and the robustness of the method against the test material. Future technological developments still need to strengthen and improve the robustness and analytic performance of these biosensors.id
dc.description.sponsorshipDIKTI melalui skema beasiswa PMDSUid
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleKonsep Green Analytical Chemistry: Pengukuran Senyawaan Hasil Degradasi Polycyclic Aromatic Hydrocarbons (PAHs) secara Elektrokimiaid
dc.title.alternativeGreen Analytical Chemistry Concept: Measurement of Polycyclic Aromatic Hydrocarbons (PAHs) Degradation Componds Electrochemicallyid
dc.typeDissertationid
dc.subject.keywordanthraceneid
dc.subject.keywordcatecholid
dc.subject.keywordcyclic voltammetryid
dc.subject.keywordGDH enzymeid
dc.subject.keywordlinear sweep voltammetryid
dc.subject.keywordnaphthaleneid
dc.subject.keywordPCRid
dc.subject.keywordoxygenaseid
dc.subject.keywordphenolid
dc.subject.keywordStaphylococcus sciuriid
dc.subject.keyword1,2-dihydroxynaphthaleneid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record