Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/165187| Title: | Analisis Kestabilan pada Model Matematika Penyebaran Hepatitis B dengan Kompartemen Pengobatan |
| Other Titles: | Stability Analysis of Mathematical Model of Hepatitis B Spread with Treatment Compartment |
| Authors: | Jaharuddin Mas'oed, Teduh Wulandari Siregar, Raudah Rizky Ramadhani |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Hepatitis B merupakan salah satu masalah kesehatan global yang
disebabkan oleh virus hepatitis B (HBV) dan dapat menyebar melalui kontak
dengan darah atau cairan tubuh yang terinfeksi. Penyakit ini dapat bersifat akut
maupun kronis, dengan risiko komplikasi serius seperti sirosis dan kanker hati.
Penelitian ini merekonstruksi model matematika penyebaran hepatitis B. Analisis
menunjukkan adanya dua titik tetap dan bilangan reproduksi dasar (R0) yang
kemudian digunakan untuk melakukan analisis sensitivitas parameternya.
Kestabilan titik tetap ditentukan oleh nilai R0. Jika R0 < 1, maka titik tetap bebas
penyakit bersifat stabil asimtotik lokal dan global, sedangkan jika R0 > 1, maka
titik tetap bebas penyakit bersifat tidak stabil. Berdasarkan analisis sensitivitas,
parameter laju penularan individu yang terinfeksi (??1) dan laju transisi dari populasi
yang dirawat menjadi sembuh (??4) memiliki pengaruh signifikan terhadap
penyebaran virus. Pengurangan laju penularan serta peningkatan laju kesembuhan
dapat menekan penyebaran penyakit hepatitis B. Hepatitis B is a global health problem caused by the hepatitis B virus (HBV) and can be spread through contact with infected blood or body fluids. This disease can be acute or chronic, with the risk of serious complications such as cirrhosis and liver cancer. This study reconstructs a mathematical model of the spread of hepatitis B. The analysis shows that there are two fixed points and a basic reproduction number (R0) which are then used to conduct a sensitivity analysis of its parameters. The stability of the fixed point is determined by the value of R0. If R0 < 1, then the disease-free fixed point is asymptotically stable locally and globally, while if R0 > 1, then the disease-free fixed point is unstable. Based on the sensitivity analysis, the parameters of the transmission rate of infected individuals (??1) and the transition rate from the treated population to cured (??4) have a significant effect on the spread of the virus. Reducing the transmission rate and increasing the recovery rate can suppress the spread of hepatitis B. |
| URI: | http://repository.ipb.ac.id/handle/123456789/165187 |
| Appears in Collections: | UT - Mathematics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5401211016_e1d58b0711744f5aa8bac0fd41bfb3fa.pdf | Cover | 1.99 MB | Adobe PDF | View/Open |
| fulltext_G5401211016_86d64f5abd2041a2911efaae23d7ccd9.pdf Restricted Access | Fulltext | 2.37 MB | Adobe PDF | View/Open |
| lampiran_G5401211016_be35ffb10ebf43518b590de7151e81be.pdf Restricted Access | Lampiran | 2.82 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.