Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/165187
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJaharuddin-
dc.contributor.advisorMas'oed, Teduh Wulandari-
dc.contributor.authorSiregar, Raudah Rizky Ramadhani-
dc.date.accessioned2025-07-17T06:44:25Z-
dc.date.available2025-07-17T06:44:25Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/165187-
dc.description.abstractHepatitis B merupakan salah satu masalah kesehatan global yang disebabkan oleh virus hepatitis B (HBV) dan dapat menyebar melalui kontak dengan darah atau cairan tubuh yang terinfeksi. Penyakit ini dapat bersifat akut maupun kronis, dengan risiko komplikasi serius seperti sirosis dan kanker hati. Penelitian ini merekonstruksi model matematika penyebaran hepatitis B. Analisis menunjukkan adanya dua titik tetap dan bilangan reproduksi dasar (R0) yang kemudian digunakan untuk melakukan analisis sensitivitas parameternya. Kestabilan titik tetap ditentukan oleh nilai R0. Jika R0 < 1, maka titik tetap bebas penyakit bersifat stabil asimtotik lokal dan global, sedangkan jika R0 > 1, maka titik tetap bebas penyakit bersifat tidak stabil. Berdasarkan analisis sensitivitas, parameter laju penularan individu yang terinfeksi (??1) dan laju transisi dari populasi yang dirawat menjadi sembuh (??4) memiliki pengaruh signifikan terhadap penyebaran virus. Pengurangan laju penularan serta peningkatan laju kesembuhan dapat menekan penyebaran penyakit hepatitis B.-
dc.description.abstractHepatitis B is a global health problem caused by the hepatitis B virus (HBV) and can be spread through contact with infected blood or body fluids. This disease can be acute or chronic, with the risk of serious complications such as cirrhosis and liver cancer. This study reconstructs a mathematical model of the spread of hepatitis B. The analysis shows that there are two fixed points and a basic reproduction number (R0) which are then used to conduct a sensitivity analysis of its parameters. The stability of the fixed point is determined by the value of R0. If R0 < 1, then the disease-free fixed point is asymptotically stable locally and globally, while if R0 > 1, then the disease-free fixed point is unstable. Based on the sensitivity analysis, the parameters of the transmission rate of infected individuals (??1) and the transition rate from the treated population to cured (??4) have a significant effect on the spread of the virus. Reducing the transmission rate and increasing the recovery rate can suppress the spread of hepatitis B.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleAnalisis Kestabilan pada Model Matematika Penyebaran Hepatitis B dengan Kompartemen Pengobatanid
dc.title.alternativeStability Analysis of Mathematical Model of Hepatitis B Spread with Treatment Compartment-
dc.typeSkripsi-
dc.subject.keywordanalisis kestabilanid
dc.subject.keywordHepatitis Bid
dc.subject.keywordTerinfeksiid
dc.subject.keywordSembuhid
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401211016_e1d58b0711744f5aa8bac0fd41bfb3fa.pdfCover1.99 MBAdobe PDFView/Open
fulltext_G5401211016_86d64f5abd2041a2911efaae23d7ccd9.pdf
  Restricted Access
Fulltext2.37 MBAdobe PDFView/Open
lampiran_G5401211016_be35ffb10ebf43518b590de7151e81be.pdf
  Restricted Access
Lampiran2.82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.