View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penanganan Masalah Kelas Tidak Seimbang Dengan Rusboost Dan Underbagging (Studi Kasus: Mahasiswa Drop Out Sps Ipb Program Magister).

      Thumbnail
      View/Open
      Fulltext (11.34Mb)
      Date
      2016
      Author
      Permatasari, Yuliana
      Saefuddin, Asep
      Sartono, Bagus
      Metadata
      Show full item record
      Abstract
      Sekolah Pascasarjana Institut Pertanian Bogor (SPs IPB) didirikan tahun 1975 dengan tujuh program studi. Saat ini, SPs IPB memiliki 67 program studi magister dan 43 program studi doktoral. SPs IPB berusaha semaksimal mungkin untuk meningkatkan kualitas baik dari segi mutu proses penyelenggaraan pembelajaran maupun mutu lulusan. Mutu lulusan dapat dilihat dari tingkat persentase kelulusan mahasiswa yaitu persentase dari jumlah mahasiswa lulus dibagi dengan jumlah total mahasiswa pascasarjana untuk setiap angkatan. Asumsikan mahasiswa drop out mempengaruhi nilai mutu lulusan, semakin banyak mahasiswa drop out maka nilai mutu lulusan menjadi semakin buruk. Penelitian ini bertujuan untuk membantu SPs IPB mendeteksi mahasiswa yang berisiko drop out dengan membangun sebuah model yang dibangkitkan dengan algoritme pohon klasifikasi. Pohon klasifikasi adalah gambaran pemodelan dari suatu persoalan yang terdiri dari serangkaian keputusan yang mengarah kepada solusi dengan peubah responnya kategorik. Mahasiswa lulus jauh lebih banyak dibandingkan mahasiswa drop out, hal ini dikenal dengan kelas tidak seimbang. Kelas mahasiswa drop out dengan jumlah contoh yang jauh lebih sedikit disebut kelas minoritas atau positif, sedangkan kelas lulus disebut kelas mayoritas atau negatif. Pemodelan menggunakan pohon klasifikasi klasik akan menghasilkan model yang keputusannya condong kepada kelas mayoritas, sedangkan kelas minoritas dianggap sebagai noise. RUSBoost dan UnderBagging merupakan algoritme yang dapat digunakan untuk mengatasi masalah kelas tidak seimbang. RUSBoost merupakan kombinasi dari penarikan contoh acak undersampling dengan ensamble boosting, sedangkan UnderBagging adalah kombinasi dari penarikan contoh acak undersampling dengan ensamble bagging. Dari hasil analisis, algoritme RUSBoost dan UnderBagging terbukti dapat memberikan performa yang lebih baik secara signifikan dibandingkan pohon klasifikasi klasik. RUSBoost dan UnderBagging menghasilkan pembagi yang lebih baik antara mahasiswa drop out dan mahasiswa lulus yang ditunjukkan dari Area Under ROC yang lebih luas. RUSBoost dan UnderBagging lebih sensitif/peka dalam memprediksi mahasiswa bersiko drop out. Sementara jika menggunakan pohon klasifikasi klasik, maka diperoleh model klasifikasi dengan nilai akurasi tinggi namun tidak sensitif terhadap objek pada kelas drop out. Hasil dari pengklasifikasian data mahasiswa SPs IPB tahun 2008-2010 menggunakan algoritme RUSBoost dan UnderBagging diperoleh bahwa faktor yang mempengaruhi status mahasiswa drop out dan mahasiswa lulus adalah beasiswa dan IPK S1.
      URI
      http://repository.ipb.ac.id/handle/123456789/80118
      Collections
      • MT - Mathematics and Natural Science [4143]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository