Show simple item record

dc.contributor.advisorKusnanto, Ali
dc.contributor.advisorNugrahani, Endar H
dc.contributor.authorOktasari, Lola
dc.date.accessioned2015-02-27T07:20:33Z
dc.date.available2015-02-27T07:20:33Z
dc.date.issued2014
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/74339
dc.description.abstractIn this paper we discussed a predator-prey model by considering a time delay to predator population and constant rate of harvesting in both predator and prey populations. We performed stability analysis to both models with and without time delay. For that without time delay we obtained two equilibrium points which are saddle for the case and spiral stable or node stable in another case. For the case of model with time delay, there are two equilibrium points which are saddle and spiral stable or saddle and spiral unstable in another case. Time delay parameter may result in the existence of limit cycle and Hopf bifurcation.en
dc.language.isoid
dc.subject.ddcMathematical modelsen
dc.subject.ddcMathematicsen
dc.titleBifurkasi Hopf pada Model Mangsa Pemangsa dengan Waktu Tunda dan Tingkat Pemanenan Konstanen
dc.subject.keywordBogor Agricultural University (IPB)en
dc.subject.keywordHopf bifurcationen
dc.subject.keywordconstant rate of harvestingen
dc.subject.keywordtime delayen
dc.subject.keywordpredator-preyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record