View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penyelesaian numerik model black-scholes menggunakan metode beda hingga upwind

      Thumbnail
      View/Open
      Full Text (1.903Mb)
      Date
      2014
      Author
      Affandi, Irfan Nur
      Lesmana, Donny Citra
      Ruhiyat
      Metadata
      Show full item record
      Abstract
      Produk derivatif adalah instrumen keuangan yang nilainya bergantung pada nilai aset. Salah satu produk derivatif yang diperdagangkan dalam pasar keuangan adalah opsi. Opsi merupakan suatu kontrak antara dua pihak, yaitu pembeli dan penjual yang memberikan hak untuk membeli atau menjual suatu aset tertentu dengan harga dan waktu yang ditentukan. Berdasarkan waktu eksekusinya, opsi dibagi menjadi opsi tipe Eropa dan opsi tipe Amerika. Model yang digunakan untuk menentukan harga opsi tipe Eropa adalah model Black-Scholes yang merupakan persamaan diferensial parsial dengan nilai awal dan syarat batasnya bergantung pada jenis opsinya. Model ini dapat diselesaikan secara numerik dengan menggunakan metode beda hingga. Pada karya ilmiah ini, metode yang akan digunakan adalah metode implisit pada diskretisasi waktu dan metode beda hingga upwind pada diskretisasi ruang. Contoh numerik juga diberikan untuk menunjukkan kekonvergenan metode ini. Kata kunci: metode beda hingga, model Black-Scholes, opsi
       
      Derivative product is a financial instrument in which the value was based on certain asset value which is called the underlying asset. One of derivative products traded in the financial market is called option, which is a contract between two parties, the buyer and the seller, in which the parties give a right to buy or sell the underlying asset by a certain price within a certain time frame. Based on the execution time, the time options are divided into two types, the European option and the American option. Models that are used to determine the European option price is called Black-Scholes model. The model is in the form of a partial differential equation with initial and boundary conditions depend on the type of options either call option or put option. This model can be solved numerically using the finite difference method. In this paper, we use implicit method for time stepping and an upwind finite difference method for spatial discretization. Numerical examples are also provided to show the convergence of this method. Key words: Black-Scholes model, finite difference method, option
       
      URI
      http://repository.ipb.ac.id/handle/123456789/72591
      Collections
      • UT - Mathematics [1487]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository